
A Labelled Sequent Calculus for BBI:

Proof Theory and Proof Search

Zhé Hóu∗1, Alwen Tiu†2, and Rajeev Goré‡1

1Research School of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia

2School of Computer Engineering, Nanyang Technological University,
Singapore 639798

Abstract

We present a labelled sequent calculus for Boolean BI (BBI), a classical variant of the logic
of Bunched Implications. The calculus is simple, sound, complete, and enjoys cut-elimination.
We show that all the structural rules in the calculus, i.e., those rules that manipulate labels
and ternary relations, can be localised around applications of certain logical rules, thereby
localising the handling of these rules in proof search. Based on this, we demonstrate a free
variable calculus that deals with the structural rules lazily in a constraint system. We propose
a heuristic method to quickly solve certain constraints, and show some experimental results
to confirm that our approach is feasible for proof search. Additionally, we show that different
semantics for BBI and some axioms in concrete models can be captured modularly simply by
adding extra structural rules.

Keywords. labelled sequent calculus, automated reasoning, BBI, free variables, proof theory

1 Introduction

The logic of bunched implications (BI) was introduced to reason about resources using additive
connectives ∧, ∨, →, >, ⊥, and multiplicative connectives >∗, ∗, −∗ [19]. Both parts are intu-
itionistic so BI is also Intuitionistic logic (IL) plus Lambek multiplicative logic (LM). Changing the
additive part to classical logic gives Boolean BI (BBI). Replacing LM by multiplicative classical
linear logic gives Classical BI (CBI). BI logics are closely related to separation logic [22], a logic for
proving properties of programs. Thus, the semantics and proof theory of BI-logics, particularly for
proof search, are important in computer science.

The ternary relational Kripke semantics of BBI-logics come in at least three different flavours:
non-deterministic (ND), partial deterministic (PD), and total deterministic (TD) [15]. These se-
mantics give different logics w.r.t. validity, respectively called BBIND, BBIPD, BBITD, and all are

∗Email: zhe.hou@anu.edu.au, Phone: +61 2 6125 1771
†Email: atiu@ntu.edu.sg, Phone: +65 6790 6107
‡Email: rajeev.gore@anu.edu.au, Phone: +61 2 6125 8603

1

undecidable [4, 15]. The purely syntactic proof theory of BBI also comes in three flavours: Hilbert
calculi [21, 10], display calculi [2] and nested sequent calculi [20]. All are sound and complete w.r.t.
the ND-semantics [10, 2, 20].

In between the relational semantics and the purely syntactic proof theory are the labelled
tableaux of Larchey-Wendling and Galmiche which are sound and complete w.r.t. the PD-semantics
[14, 13]. They remark that “the adaptation of this tableaux system to BBITD should be straight-
forward (contrary to BBIND)” [16]. We return to these issues in Section 8.

At a very high level, each logical rule introduces some logical connective into the conclusion while
a structural rule does not involve any logical connective explicitly. Thus a logical rule is driven by
the presence of a logical connective in the conclusion while a structural rule is not. In this setting,
effective backward proof search requires that the rules of the calculus have certain properties. First,
we prefer as many rules to be invertible as possible since these can be applied backwards as soon
as possible without losing derivations. Second, we prefer the logical rules to have the subformula
property so that they cannot be applied backwards ad infinitum. Third, we prefer as few structural
rules as possible since, typically, these can be applied to any sequent causing non-determinism and
possibly also non-termination. Fourth, when structural rules are necessary, we would like to drive
the applications of structural rules using a systematic proof search procedure (strategy) which is
driven by the applications of logical rules, as this may reduce non-determinism.

The display postulates and other structural rules of display calculi, especially the contraction
rules on structures, are impractical for backward proof search since the display postulates (merely)
shuffle structures in a sequent, whereas the contraction rules copy structures from the conclusion to
the premise. Moreover, both can be applied to (almost) every sequent so these rules are applicable at
any stage of the proof search, and they can easily generate redundant derivations when it is not clear
which inference rule to use. Hence it is hard to give a systematic proof search procedure without
controlling these rules. Nested sequents usually face similar problems with the contraction rules
and propagation rules, and although Park et al. [20] showed the admissibility of contraction in an
improved nested sequent calculus, it contains other rules that explicitly contract structures. Their
iterative deepening automated theorem prover for BBI based on nested sequents is terminating and
incomplete for bounded depths, but complete and potentially non-terminating for an unbounded
depth [20]. The labelled tableaux of Larchey-Wendling and Galmiche compile all structural rules
into PD-monoidal constraints, and are cut-free complete for BBIPD using a potentially infinite
counter-model construction [13]. But effective proof search using a strategy is only a “perspective”
and is left as further work [13, page 2].

Surprisingly, many applications of BBI do not directly correspond to its widely used non-
deterministic semantics. For example, separation logic models are instances of partial deterministic
models [15] while “memory models” for BBI are restricted to have indivisible units: “the empty
memory cannot be split into non-empty pieces” [4]. Other variants of separation logic employ
semantics based on separation algebra [7] or separation theory [6] that are useful in program ver-
ification. Our goal is to give a labelled proof system for BBI based upon the ND-semantics which
easily extends to the PD-, TD- and other application-driven semantics, while being amenable to
effective proof search.

Our labelled sequent calculus LSBBI for BBI adopts some features from existing labelled
tableaux for BBI [14] and existing labelled sequent calculi for modal logics [17]. Unlike these
calculi, some LSBBI -rules contain substitutions on labels. As in traditional sequent calculi without
labels, we are able to absorb the effects of weakening and contraction into some of the logical rules,
thereby allowing us to leave out these structural rules by making them admissible. The absorption

2

of contraction makes many logical rules invertible as desired but breaks the subformula property,
which means that we lose termination. Some logical rules are still not invertible after absorbing
contraction, but the presence of labels allows us to make even these rules invertible, at the price
of requiring further non-logical rules to explicitly encode the frame conditions of the underlying
(Kripke) semantics. We refer to such rules simply as structural rules.

From a proof-search perspective, labelled calculi are no better than display calculi because these
extra structural rules are just as bad as display postulates for proof search since they are typically
applicable (backwards) to every sequent. As a step towards our goal, we show that the applications
of these extra structural rules are necessary only prior to applying certain logical rules backwards.
Thus backward proof search in LSBBI can be structured so that we first apply one fixed set of
invertible logical rules, then apply these extra structural rules, and then apply the remaining set of
invertible logical rules, leading to a syntax-driven proof search procedure for LSBBI in which all the
rule applications in proof search are decided by the logical connectives (the syntax), and redundant
derivations caused by structural rules are reduced. In essence, our proof search procedure for a given
formula consists of two stages: one where we guess the shape of a candidate derivation tree obtained
by applications of introduction rules for logical connectives occurring in the given formula, and the
other where we solve certain structural constraints on the relations between labels generated from
the applications of these logical rules. The constraint solving part involves only reasoning in the
ND-monoidal semantics of BBI and validates that the chosen candidate proof tree does indeed form
a valid proof. Technically, this is done by introducing two intermediate proof systems: LS eBBI and

LS sf
BBI (Section 4) where structural rules are isolated into side conditions of introduction rules, and

FVLSBBI (Section 5) where those side conditions are solved lazily by delaying the instantiation of
free-variables until we reach zero-premise rules.

Our work is novel from three perspectives. Compared to the labelled tableaux of Larchey-
Wendling and Galmiche, we deal with the non-deterministic semantics of BBI, which they have
flagged as a difficulty, and we obtain a constructive cut-elimination procedure. Compared to the
nested sequent calculus of Park et al., our calculus has much simpler structural rules. Some of Park
et al.’s structural rules and traverse rules involve copying structures, and when made to absorb
contraction, these rules (especially EAC) are extraordinarily long and complicated. Our structural
rules directly capture the semantics using ternary relational atoms, thus they are very intuitive
and easy to read. Note that Park et al. actually gave a labelled variant of their nested sequent
calculus, with the same logical rules as ours. However, their structural rules are still just notational
variants of the original ones, which are lengthy and do not use ternary relations. We also show
that adding certain structural rules to LSBBI allows us to obtain cut-free labelled calculi for all the
other semantics mentioned above. Finally, as far as we know, there are no other free-variable calculi
for the logics we consider, let alone ones which are amenable to proof search as are our calculi.

The rest of the paper is organized as follows. In Section 2, we present the semantics of BBI,
following [15], and our labelled sequent calculus LSBBI . We show that LSBBI is sound with respect
to the semantics, and it is complete indirectly via a Hilbert system for BBI [10] which is already
known to be complete. In Section 3, we prove some important proof theoretic properties of LSBBI :
invertibility of inference rules, admissibility of contraction, and more importantly, cut-elimination.
In Section 4, we discuss a permutation result for inference rules, allowing us to isolate applications of
structural rules to certain stages of systematic backward proof search. In Section 5, we describe how
to reduce proof search to constraint solving in a free-variable sequent calculus. We give a heuristic
method for solving the resulting constraint problem in Section 6 and report on experimental results
in Section 7. Section 8 concludes the paper. Detailed proofs are available in appendices.

3

2 The Labelled Sequent Calculus for BBI

The semantics of BBI is in Section 2.1, then we present our labelled calculus in Section 2.2. The
soundness proof is outlined in Section 2.3, followed by the completeness proof in Section 2.4, in
which the Hilbert system of BBI is used.

2.1 Syntax and Semantics of BBI

BBI formulae are defined inductively as follows, where p is an atomic proposition, >∗, ∗,−∗ are the
multiplicative unit, multiplicative conjunction, and multiplicative implication respectively:

A ::= p | > | ⊥ | ¬A | A ∨A | A ∧A | A→ A | >∗ | A ∗A | A−∗ A

The labelled sequent calculus for BBI employs a ternary relation of worlds that is based on a
non-deterministic monoid structure, à la Galmiche et al. [10].

A non-deterministic monoid is a triple (M, ◦, ε) where M is a non-empty set, ε ∈ M and
◦ : M×M → P(M). The extension of ◦ to P(M) uses X ◦ Y =

⋃
{x ◦ y : x ∈ X, y ∈ Y }. The

following conditions hold in this monoid:

• Identity: ∀a ∈M.ε ◦ a = {a}
• Commutativity: ∀a, b ∈M.a ◦ b = b ◦ a
• Associativity: ∀a, b, c ∈M.a ◦ (b ◦ c) = (a ◦ b) ◦ c.

The ternary relation over worlds is defined by . ⊆M×M×M such that .(a, b, c) if and only
if c ∈ a ◦ b. Following Galmiche et al., we write a, b . c instead of .(a, b, c). We therefore have the
following conditions for all a, b, c, d ∈M:

• Identity: ε, a . b iff a = b
• Commutativity: a, b . c iff b, a . c
• Associativity: If ∃k s.t. (a, k . d) and (b, c . k) then ∃l s.t. (a, b . l) and (l, c . d).

Therefore we obtain a BBI relational frame (M, ., ε) from a non-deterministic monoid (M, ◦, ε)
in the obvious way. Intuitively, the relation x, y . z means that z can be partitioned into two parts:
x and y. The identity condition can be read as every world can be partitioned into an empty world
and itself. Commutativity captures that partitioning z into x and y is the same as partitioning
z into y and x. Finally, associativity means that if z can be partitioned into x and y, and x can
further be partitioned into u and v, then all together z consists of u, v and y. Therefore there must
exist an element w which is the combination of v and y, such that w and u form z. Note that since
we do not restrict this monoid to be cancellative, (x, y . x) does not imply y = ε.

A BBI model (M, ., ε, v) consists of a relational frame (M, ., ε) and a valuation v : V ar →
P(M). A forcing relation “
” between elements ofM and BBI-formulae is defined as follows [10]:

m
 >∗ iff m = ε m
 P iff P ∈ V ar and m ∈ v(P)
m
 ⊥ iff never m
 A ∨B iff m
 A or m
 B
m
 > iff always m
 A ∧B iff m
 A and m
 B
m
 ¬A iff m 6
 A m
 A→ B iff m 6
 A or m
 B
m
 A ∗B iff ∃a, b.(a, b . m and a
 A and b
 B)
m
 A−∗ B iff ∀a, b.((m, a . b and a
 A) implies b
 B)

Given a model (M, ., ε, v), a formula A is true at m ∈ M if m
 A. A formula A is valid if it is
true at every world in every model.

4

2.2 The Labelled Sequent Calculus

We now give the details of our labelled sequent calculus with some discussion on how it is related
to the semantics.

We assume an infinite set LVAR of label variables, and a label constant ε. The latter is a syntactic
counterpart of the ε world in the semantics. We shall use lower case letters to range over labels, i.e,
the set LVAR ∪ {ε}. A labelled formula is an expression of the form x : A, where x is a label and A
is a formula. A relational atom is an expression of the form (x, y . z), where x, y and z are labels.
Given a relational frame (M, ., ε), the intended interpretations of labels are worlds in M, and the
intended interpretation of the symbol . is the ternary relation . in the model. The interpretations
of labelled formulae and relational atoms in the semantics are dependent on the interpretation of
labels. The latter is given by a mapping ρ : {ε} ∪ LVAR →M, with ρ(ε) = ε. That is, we fix the
interpretation of the label constant ε to be the world ε in the semantics. Given such a ρ, a labelled
formula w : A means formula A is true in world ρ(w). A relational atom (x, y . z) is interpreted
as ρ(x), ρ(y) . ρ(z) in the semantics. That is, a labelled formula w : A is true iff ρ(w)
 A, and a
relational atom (x, y . z) is true iff ρ(x), ρ(y) . ρ(z) holds.

A sequent is of the form Γ ` ∆, where Γ and ∆ are structures, defined formally via:

Γ ::= w : A | (x, y . z) | Γ; Γ ∆ ::= w : A | ∆; ∆

In our definition of sequents, the structural connective “;” in the antecedent means (additive)
“and” whereas in the succedent it means (additive) “or”. We assume implicitly that ‘;’ is associa-
tive and commutative. Note that, however, there is a subtlety in this interpretation of ‘;’. Unlike
traditional Gentzen sequents, a labelled sequent Γ ` ∆ does not in general correspond to a formula∧

Γ →
∨

∆. This is because the interpretation of a labelled formula is dependent on the interpre-
tation of the label it is attached to. If, however, all formulas in Γ are attached to the same label,
then the Γ corresponds to the formula

∧
Γ.

Our use of ‘;’ as the structural connective in labelled sequents is slightly different from the tra-
ditional sequent notation where “,” is used as the structural connective. Our notation is consistent
with sequent systems for the family of Bunched Implication (BI) logics, where “;” is the additive
structural connective, and “,” is used to denote the multiplicative structural connective. The mul-
tiplicative structural connective is not explicitly presented in our sequent notation, but as we shall
see later, it is encoded implicitly in the relational atoms.

The inference rules of our labelled system LSBBI are shown in Figure 1, where we use P as a
proposition, A,B are formulae, w, x, y, z are in the set LVAR of labels, ε is the label constant. The
formula introduced in the conclusion of each rule is the principal formula, and the relational atom
introduced in the conclusion of each rule is the principal relational atom.

Our inference rules are designed to capture the semantics of BBI (cf. end of Section 2.1). For
example, reading upward, the left rule for ∗ considers the situation where the formula A ∗B is true
in z, this involves an existential condition in the semantics:

∃a, b s.t. (a, b . z) holds and a
 A and b
 B.

As in the sequent calculus for first-order logic, we create fresh labels for existentially quantified
variables. Therefore ∗L creates a premise containing a new relational atom (x, y . z) where x, y are
fresh, and makes A true in x and B true in y. The ∗R rule considers the case where the formula
A ∗B is false in z, by negating the semantics of ∗, we obtain that

∀a, b, if (a, b . z) holds, then a 6
 A or b 6
 B.

5

Therefore ∗R checks existing relational atoms in the conclusion, and when (x, y .z) is found for any
labels x, y, the rule creates two premises for A being false in x and B being false in y respectively.
The rules for −∗ are analogous: the −∗ L rule uses an existing relational atom in the conclusion as
−∗ L involves an universal condition; and the −∗ R rule creates a new relational atom with fresh
labels since it involves an existential condition. Similarly, in rules A, AC , the label w must be
fresh in the premise, as it also encodes an existential condition. Note that the rule AC is a special
case of the rule A where the two relational atoms are the same. AC is required to guarantee the
admissibility of contraction, as will be shown in the proof of Lemma 3.4.

In the rule >∗L, there is an operation of global substitution [ε/x] in the premise. A substitution
Γ[y/x] is defined in the usual way: replace every occurrence of x in Γ by y. The structural rules Eq1

and Eq2 also involve substitutions, both of them are needed since substituting the label constant ε
is forbidden. That is, if the principal relational atom is (ε, ε .w), then we can only use the rule Eq2

to replace every w by ε, but we cannot use the Eq1 rule to replace every ε by w. The case where
Eq2 cannot be used is symmetric.

The additive rules (⊥L, >R, ∧L, ∧R, → L, → R) and the multiplicative rules (>∗L, >∗R, ∗L,
∗R, −∗ L, −∗ R) respectively deal with the additive/ multiplicative connectives. The zero-premise
rules are those with no premise (id, ⊥L, >R, >∗R). Figure 2 shows an example derivation in
LSBBI , where we omit the unimportant parts, and use r × n if a rule r is applied n times.

To prove a formula, we start (at the bottom) by labelling the formula with an arbitrary world
w, then try to apply the rules in LSBBI backwards. A sequent is provable/derivable if every branch
in the backward proof search can be closed by a zero-premise rule application.

The fact that weakening and contraction are forbidden in the multiplicative fragment of BBI
is reflected in our calculus as follows. The rules ∗L and −∗ R create new relations in moving from
conclusions to premises, so ` x : (p ∗ p) → p is not derivable. In a cut-free derivation, a relation
atom of the form (w,w .w) where w 6= ε can never be created, so ` x : p→ (p ∗ p) is not derivable.

Definition 2.1 (Sequent Validity). A sequent Γ ` ∆ in LSBBI is valid if for all (M, ., ε), v and ρ,
if every member of Γ is true then so is some member of ∆.

Note that BBI-validity of a formula A corresponds to the validity of the sequent ` x : A, where x
is an arbitrary label. This correspondence is also adopted in other work for BBI [15, 20] and CBI [3],
but is stronger than that used in the sequent calculus LBI for BI 1 [21], in which a formula A is
valid iff ∅m ` A is provable, where ∅m is the multiplicative structural unit. For example, ∅m ` >∗
is provable in LBI, but the sequent ` x : >∗ is not provable (although the sequent ` ε : >∗ is
provable) in LSBBI . Translated to our setting, validity of a formula A in BI would correspond to
provability of ` ε : A.

2.3 Soundness

The soundness proof reasons about the falsifiability of sequents, which is defined as follows.

Definition 2.2 (Sequent Falsifiability). A sequent Γ ` ∆ in LSBBI is falsifiable iff there exist
some (M, ., ε), v and ρ, such that every relational atom and labelled formula in Γ is true and every
labelled formula in ∆ is false, where: (1) w : A is true iff ρ(w)
 A; (2) w : A is false iff ρ(w) 6
 A;
and (3) (x, y . z) is true iff ρ(x), ρ(y) . ρ(z) holds.

1BI is defined proof theoretically, so the validity of its formulae is defined by sequent validity in LBI.

6

Identity and Cut:

id

Γ;w : P ` w : P ; ∆
Γ ` x : A; ∆ Γ′;x : A ` ∆′

cut
Γ; Γ′ ` ∆; ∆′

Logical Rules:

⊥L

Γ;w : ⊥ ` ∆
Γ[ε/w] ` ∆[ε/w]

>∗L
Γ;w : >∗ ` ∆

>R

Γ ` w : >; ∆
>∗R

Γ ` ε : >∗; ∆

Γ;w : A;w : B ` ∆
∧L

Γ;w : A ∧B ` ∆

Γ ` w : A; ∆ Γ ` w : B; ∆
∧R

Γ ` w : A ∧B; ∆

Γ ` w : A; ∆ Γ;w : B ` ∆
→ L

Γ;w : A→ B ` ∆

Γ;w : A ` w : B; ∆
→ R

Γ ` w : A→ B; ∆

(x, y . z); Γ;x : A; y : B ` ∆
∗L

Γ; z : A ∗B ` ∆

(x, y . z); Γ;x : A ` z : B; ∆
−∗ R

Γ ` y : A−∗ B; ∆

(x, y . z); Γ ` x : A; z : A ∗B; ∆ (x, y . z); Γ ` y : B; z : A ∗B; ∆
∗R

(x, y . z); Γ ` z : A ∗B; ∆

(x, y . z); Γ; y : A−∗ B ` x : A; ∆ (x, y . z); Γ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z); Γ; y : A−∗ B ` ∆

Structural Rules:

(y, x . z); (x, y . z); Γ ` ∆
E

(x, y . z); Γ ` ∆

(u,w . z); (y, v . w); (x, y . z); (u, v . x); Γ ` ∆
A

(x, y . z); (u, v . x); Γ ` ∆

(x, ε . x); Γ ` ∆
U

Γ ` ∆

(x,w . x); (y, y . w); (x, y . x); Γ ` ∆
AC

(x, y . x); Γ ` ∆

(ε, w′ . w′); Γ[w′/w] ` ∆[w′/w]
Eq1

(ε, w . w′); Γ ` ∆

(ε, w′ . w′); Γ[w′/w] ` ∆[w′/w]
Eq2

(ε, w′ . w); Γ ` ∆

Side conditions:
In >∗L, Eq1 and Eq2, w 6= ε.
In ∗L and −∗ R, the labels x and y do not occur in the conclusion.
In A and AC , the label w does not occur in the conclusion.

Figure 1: The labelled sequent calculus LSBBI for Boolean BI.

Theorem 2.1 (Soundness). For any label variable w ∈ LVAR and any BBI formula F , if ` w : F
is derivable in LSBBI , then F is valid in BBIND.

Proof. The condition w ∈ LVAR simply says that w cannot be the label constant ε but ρ(w) can be
the world ε. Suppose ` w : F is derivable but F is invalid, i.e., there is some model (M, ., ε, v) where

7

id

· · · ;w2 : r ` w2 : r; · · ·
id

· · · ;w1 : q ` w1 : q; · · ·
∗R

(w2, w1 . w0); (ε, w1 . w1); (w1, w2 . w0); ε : p; ε : >∗;w1 : q;w2 : r ` w0 : r ∗ q
E

(ε, w1 . w1); (w1, w2 . w0); ε : p; ε : >∗;w1 : q;w2 : r ` w0 : r ∗ q
Eq1

(ε, w4 . w1); (w1, w2 . w0); ε : p; ε : >∗;w4 : q;w2 : r ` w0 : r ∗ q
>∗L

(w3, w4 . w1); (w1, w2 . w0);w3 : p;w3 : >∗;w4 : q;w2 : r ` w0 : r ∗ q
∧L

(w3, w4 . w1); (w1, w2 . w0);w3 : p ∧ >∗;w4 : q;w2 : r ` w0 : r ∗ q
∗L × 2

w0 : ((p ∧ >∗) ∗ q) ∗ r ` w0 : r ∗ q
→ R

` w0 : (((p ∧ >∗) ∗ q) ∗ r)→ (r ∗ q)

Figure 2: An example derivation for (((p ∧ >∗) ∗ q) ∗ r)→ (r ∗ q) in LSBBI .

Axioms Deduction Rules

A→ (>∗ ∗A)

(>∗ ∗A)→ A

(A ∗B)→ (B ∗A)

(A ∗ (B ∗ C))→ ((A ∗B) ∗ C)

` A ` A→ B
MP` B

` A→ C ` B → D ∗
` (A ∗B)→ (C ∗D)

` A→ (B−∗ C)
−∗ 1

` (A ∗B)→ C

` (A ∗B)→ C
−∗ 2

` A→ (B−∗ C)

Figure 3: Some axioms and rules for the Hilbert system for BBI.

∃m ∈ M such that m 6
 F . This also means that there is a label mapping ρ, where ρ(w) = m,
such that ` w : F is falsifiable in this model under ρ. We then show that each rule preserves
falsifiability upwards. That is, if the conclusion is falsifiable, then at least one of the premises is
falsifiable (usually in the same choice of v, ρ, and M). As the rules in LSBBI are designed based
on the semantics, this is easy to verify. The details are in Appendix A.1. As ` w : F is derivable,
each branch must end with a zero-premise rule, the conclusion of which is not falsifiable in any
model. This contradicts the assumption that ` w : F is falsifiable. Therefore there is no model and
no label mapping that falsifies ` w : F . So given any model, no matter where we map w to, F is
always true in that world. Thus F is valid.

2.4 Completeness

We prove the completeness of LSBBI by showing that every derivation of a formula in the Hilbert
system for BBI [10] can be mimicked in LSBBI , possibly using cuts.

The Hilbert system for BBI consists of the axioms and rules for classical propositional logic
for the additive fragment and additional axioms and rules for the multiplicative fragment. For the
latter, we use the axiomatisation given in [10], and listed in Figure 3. We omit the axioms for
classical propositional logic as they are standard, and can be found in, e.g., [24].

Theorem 2.2 (Completeness). For any label w ∈ LVAR and any formula F of BBI, if F is valid
then ` w : F is derivable in LSBBI .

Proof. Again, it is not possible for the label variable w to be the label constant ε. As the Hilbert
system for BBI is complete, there is a derivation Π of F in the Hilbert system. We show that one

8

id
Γ ` w1 : A

id
Γ;w1 : B−∗ C ` w2 : B

id
Γ;w1 : B−∗ C;w : C ` w : C

−∗ L
Γ;w1 : B−∗ C ` w : C

→ L
Γ;w1 : A→ (B−∗ C) ` w : C

Π′1

` w1 : A→ (B−∗ C)

Π2

(w1, w2 . w);w1 : A→ (B−∗ C);w1 : A;w2 : B ` w : C
cut

(w1, w2 . w);w1 : A;w2 : B ` w : C
∗L

w : A ∗B ` w : C → R` w : (A ∗B)→ C

Figure 4: A derivation of the rule −∗ 1 putting Γ = {(w1, w2 . w);w1 : A;w2 : B}).

can construct an LSBBI derivation Π′ of the sequent ` w : F , for any label w 6= ε. It is enough to
show that each axiom and each rule of the Hilbert system can be derived. The derivations of the
axioms in LSBBI are straightforward; we show here a non-trivial case in the derivation of the rules
of the Hilbert system. Consider the rule −∗ 1, suppose Π is the derivation:

Π1

A→ (B−∗ C)
−∗ 1

(A ∗B)→ C

The LSBBI derivation Π′ is in Figure 4, where Π′1 comes from Π1 via the induction hypothesis, Π2

is the upper derivation in Figure 4, and Γ = {(w1, w2 . w);w1 : A;w2 : B}).

Corollary 2.3 (Formula validity). For any label variable w ∈ LVAR and any BBI formula A, the
formula A is valid iff ` w : A is derivable in LSBBI .

Proof. Follows from the soundness and completeness proof. Since w is arbitrary, A is true at any
world for any valuation v, mapping ρ, and monoid structure (M, ., ε).

We compare our proofs of soundness and completeness with those of Larchey-Wendling and
Galmiche [14, 13] in Section 8.

3 Cut-elimination

This section proves the cut-elimination theorem for our labelled sequent calculus. The general proof
outlined here is similar to the cut-elimination proof for labelled systems for modal logic [17], i.e., we
start by proving a substitution lemma for labels, followed by proving the invertibility of inference
rules, weakening admissibility, and contraction admissibility, before proceeding to the main cut-
elimination proof. As there are many case analyses in these proofs, we only outline the important
parts here. More details are available in Appendix A

Given a derivation Π, its height ht(Π) is defined as the length of a longest branch Π. The
substitution lemma shows that provability is preserved under arbitrary substitutions of labels.
When proving this lemma, we will frequently use the fact that, when applied on a sequent, the

9

series of substitutions [y/x][z/y] have the same effect as [z/x][z/y], for any label z and any non-ε
labels x, y.

Lemma 3.1 (Substitution). If Π is an LSBBI derivation for the sequent Γ ` ∆ then there is an
LSBBI derivation Π′ of the sequent Γ[y/x] ` ∆[y/x] where every occurrence of label x (x 6= ε) is
replaced by label y, such that ht(Π′) ≤ ht(Π).

Proof. By induction on ht(Π).
(Base case) If ht(Π) = 0, then the only applicable rules are id, ⊥L, >R and >∗R. If the label x 6= ε
being substituted is not on the principal formula, then the substitution does not affect the original
derivation. Since we do not allow to substitute for ε, the proof for >∗R can only be this case.
Otherwise we obtain the new derivation by simply replacing the label of the principal formula.
(Inductive case) If ht(Π) > 0, then consider the last rule applied in the derivation. We consider
three main cases.

1. Neither x nor y is the label of the principal formula.

(a) Suppose the last rule applied is >∗L, and x 6= w and y 6= w, and Π runs as below:

Π1

Γ′[ε/w] ` ∆[ε/w]
>∗L

Γ′;w : >∗ ` ∆

By the induction hypothesis, there is a derivation Π′1 of Γ′[ε/w][y/x] ` ∆[ε/w][y/x] with
ht(Π′1) ≤ ht(Π1). Since x and y are different from w, this sequent equals Γ′[y/x][ε/w] `
∆[y/x][ε/w]. Therefore Π′ is constructed as follows, where ht(Π′) ≤ ht(Π).

Π′1

Γ′[y/x][ε/w] ` ∆[y/x][ε/w]
>∗L

Γ′[y/x];w : >∗ ` ∆[y/x]

(b) If the last rule applied is Eq1, we distinguish the following cases: x is not w or w′;
x = w; x = w′. The analysis is similar to above, but is more complicated. If the last rule
applied is Eq2, we consider three cases: x 6= w and y 6= w; x = w; and y = w. These are
symmetric to the case where the last rule is Eq1. See Appendix A.2 for details.

(c) For other rules, we can simply use the induction hypothesis, and apply the corresponding
rule to obtain the required derivation.

2. y is the label of the principal formula. Most of the cases follow similarly as above, except for
>∗L. In this case the original derivation is as follows.

Π1

Γ′[ε/y] ` ∆[ε/y]
>∗L

Γ′; y : >∗ ` ∆

Our goal is to derive Γ′[y/x]; y : >∗ ` ∆[y/x]. Applying >∗L backwards to it we get

Γ′[y/x][ε/y] ` ∆[y/x][ε/y]

10

Note that this sequent is equal to Γ′[ε/y][ε/x] ` ∆[ε/y][ε/x], and from the induction hypothesis
we know that there is a derivation of this sequent of height less than or equal to ht(Π).

3. x is the label of the principal formula.

(a) Additive rules do not modify labels, so even if the label of the principal formula is
replaced by some other label, we can still apply the induction hypothesis on the premise,
then use the rule to derive the conclusion.

(b) For the multiplicative rules that do not produce eigenvariables2 (∗R,−∗ L,>∗L), we can
proceed similarly as in the additive cases, except for the >∗L rule. For the >∗L rule, if
the label x of the principal formula is replaced by some (other) label y, i.e., Π is

Π1

Γ′[ε/x] ` ∆[ε/x]
>∗L

Γ′;x : >∗ ` ∆

then we need to derive Γ′[y/x]; y : >∗ ` ∆[y/x]. Using >∗L rule we have:

Γ′[y/x][ε/y] ` ∆[y/x][ε/y]
>∗L

Γ′[y/x]; y : >∗ ` ∆[y/x]

Note that the premise now is equal to Γ′[ε/x][ε/y] ` ∆[ε/x][ε/y], and can be proved using
the induction hypothesis on Π1.

If y = ε, then Π′ is the same as Π, because ε : >∗ in the antecedent can never be used in
any rule applications, it will remain unchanged until the branch is closed.

(c) For the multiplicative rules that have eigenvariables (∗L and −∗ R), if the label of the
principal formula is replaced by a label other than the newly created labels in the rules,
then we proceed similarly as in the additive cases. If the label of the principal formula is
replaced by one of the newly created labels, then we just need to create a different new
label in the new relation.

For ∗L, we have the derivation:

Π1

(y, z . x); Γ′; y : A; z : B ` ∆
∗L

Γ′;x : A ∗B ` ∆

If x is substituted by y (the case for substituting by z is symmetric), then we need a
derivation of Γ′[y/x]; y : A ∗ B ` ∆[y/x]. Note that the ∗L rule requires the relation
(y, z .x) to be fresh, so in the original derivation y and z cannot be in Γ′ or ∆. Therefore
by the induction hypothesis we must have a derivation Π′1 for

(y′, z′ . x); Γ′; y′ : A; z′ : B ` ∆,

where y′ and z′ are new labels, such that ht(Π′1) ≤ ht(Π1). Applying the induction
hypothesis again to Π′1, we have a derivation Π′′1 (y′, z′.y); Γ′[y/x]; y′ : A; z′ : B ` ∆[y/x],
with ht(Π′′1) ≤ ht(Π1). Thus the derivation Π′ is constructed as follows.

2i.e., those labels that are required to be fresh in the premise.

11

Π′′1

(y′, z′ . y); Γ′[y/x]; y′ : A; z′ : B ` ∆[y/x]
∗L

Γ′[y/x]; y : A ∗B ` ∆[y/x]

The case for −∗ R is similar.

Admissibility of weakening is proved by a simple induction on the height of derivations so we
state the lemma without proof.

Lemma 3.2 (Weakening admissibility). If Γ ` ∆ is derivable in LSBBI , then for all structures Γ′

and ∆′, the sequent Γ; Γ′ ` ∆; ∆′ is derivable with the same height in LSBBI .

The converse of weakening admissibility, i.e., a certain ‘strengthening’ property, also holds for
certain formulas. More precisely, if a sequent Γ;w : A ` ∆ is derivable, and the labelled formula
w : A is not principal in any rule application, then Γ ` ∆ is also derivable by the same derivation.
By weakening, the latter implies that Γ; Γ′ ` ∆ is also derivable for any Γ′. That is, we can replace
an unused labelled formula by an arbitrary structure. This and other supplementary lemmas related
to weakening are proved in Appendix A.3.

Lemma 3.3 (Invertibility of rules). If Π is a cut-free LSBBI derivation of the conclusion of a rule
then there is a cut-free LSBBI derivation for each premise, with height at most ht(Π).

Proof. Most of the rules are trivially invertible. The proofs for the additive rules are similar to
those for the additive rules from labelled calculi for modal logic or G3c (cf. [18]) since the rules are
the same. The slightly non-trivial cases for the rules involving substitutions of labels follow from
Lemma 3.1. The proof is detailed in Appendix A.4.

The proof of the admissibility of contraction on additive formulae is similar to that for classical
sequent calculus since the LSBBI rules for these connectives are the same. In the multiplicative rules,
the principal formula is retained in the premise, so admissibility of contraction on multiplicative
formulae follows trivially. We need to prove that contraction on relational atoms is admissible, as
stated in the next lemma.

Lemma 3.4. For any structures Γ,∆, and relational atom (x, y . z): if Π a cut-free LSBBI

derivation of (x, y.z); (x, y.z); Γ ` ∆, then there is a cut-free LSBBI derivation Π′ of (x, y.z); Γ ` ∆
with ht(Π′) ≤ ht(Π).

Proof. (Outline) Let n = ht(Π). The proof is by induction on n. Most structural rules only have
one principal relational atom, so it is easy to show that contraction can permute through them.

The case for A needs more care, as it involves two principal relational atoms. If the two principal
relational atoms are different, then the admissibility of contraction follows similarly as above. But
if the principal relational atoms are identical, the situation is a bit tricky:

Π

(x,w . x); (y, y . w); (x, y . x); (x, y . x); Γ ` ∆
A

(x, y . x); (x, y . x); Γ ` ∆

There is no obvious way to make this case admissible, and this is the reason we have a special
case of the rule A, namely AC . In the rule AC , contraction is absorbed so that there is only one
principal relational atom. The new derivation is as follows.

12

Π′

(x,w . x); (y, y . w); (x, y . x); Γ ` ∆
AC

(x, y . x); Γ ` ∆

For Eq1 and Eq2, as the principal relational atom is carried to the premise (although some
labels may be changed), so admissibility of contraction on those relational atoms is obvious.

The admissibility of contraction on formulae are straightforward, the most of cases are analogous
to the ones in Negri’s labelled calculus for modal logic [17]. For details please see Appendix A.5.

Lemma 3.5 (Contraction admissibility). If Γ; Γ ` ∆; ∆ is derivable in LSBBI , then Γ ` ∆ is
derivable with the same height in LSBBI .

Cut Elimination Theorem

We define the cut rank of an application of the cut rule as the pair (|f |, ht(Π1) + ht(Π2)), where
|f | denotes the size of the cut formula (i.e., the number of connectives in the formula), and ht(Π1),
ht(Π2) are the heights of the derivations above the cut rule, the sum of them is call the cut height.
Cut ranks are ordered lexicographically, where each component of the ranks are ordered according
to the ordering > on natural numbers.

Theorem 3.6 (Cut-elimination). If Γ ` ∆ is derivable in LSBBI , then it is also derivable without
using the cut rule.

Proof. By induction on the cut ranks of the proof in LSBBI . We show that each application of cut
can either be eliminated, or be replaced by one or more cut rules of smaller ranks. The argument for
termination is similar to the cut-elimination proof for G3ip [18]. We start to eliminate the topmost
cut first, and repeat this procedure until there is no cut in the derivation. We first show that cut
can be eliminated when the cut height is the lowest, i.e., at least one premise is of height 1. Then
we show that the cut height is reduced in all cases in which the cut formula is not principal in both
premises of cut. If the cut formula is principal in both premises, then the cut is reduced to one or
more cuts on smaller formulae or shorter derivations. Since atoms cannot be principal in logical
rules, finally we can either reduce all cuts to the case where the cut formula is not principal in both
premises, or reduce those cuts on compound formulae until their cut heights are minimal and then
eliminate those cuts.

We show here some non-trivial cut elimination steps for the inductive cases; the full proof can
be found in Appendix A.6.

Suppose neither premise of the cut is an instance of id, ⊥L, >R, or >∗R. We distinguish three
cases here: the cut formula is not principal in the left premises; the cut formula is only principal in
the left premise; and the cut formula is principal in both premises.

1. The cut formula is not principal in the left premise, which ends with a rule r.

(a) If r is >∗L, w.l.o.g. we assume the label of the principal formula is y (which might be
equal to x). The original derivation is as follows.

Π1

Γ[ε/y] ` x : A; ∆[ε/y]
>∗L

Γ; y : >∗ ` x : A; ∆

Π2

Γ′;x : A ` ∆′
cut

Γ; Γ′; y : >∗ ` ∆; ∆′

13

By the Substitution lemma, there is a derivation Π′2 of Γ′[ε/y];x : A ` ∆[ε/y]. Thus we
can transform the derivation into the following:

Π1

Γ[ε/y] ` x : A; ∆[ε/y]

Π′2

Γ′[ε/y];x : A ` ∆′[ε/y]
cut

Γ[ε/y]; Γ′[ε/y] ` ∆[ε/y]; ∆′[ε/y]
>∗L

Γ; Γ′; y : >∗ ` ∆; ∆′

If x = y in the original derivation, then the new derivation cuts on ε : A instead. As
substitution is height preserving, the cut height in this case is reduced as well.

(b) If r is Eq1, and the label x of the principal formula is not equal to w′, the original
derivation is as follows.

Π1

(ε, w . w); Γ[w/w′] ` x : A; ∆[w/w′]
Eq1

(ε, w′ . w); Γ ` x : A; ∆

Π2

Γ′;x : A ` ∆′
cut

(ε, w′ . w); Γ; Γ′ ` ∆; ∆′

This cut is reduced in the same way as the >∗L case, where we get Π′2 from the Substi-
tution Lemma:

Π1

(ε, w . w); Γ[w/w′] ` x : A; ∆[w/w′]

Π′2

Γ′[w/w′];x : A ` ∆′[w/w′]
cut

(ε, w . w); Γ[w/w′]; Γ′[w/w′] ` ∆[w/w′]; ∆′[w/w′]
Eq1

(ε, w′ . w); Γ; Γ′ ` ∆; ∆′

If x = w′, then we cut on w : A instead in the reduced version.

(c) If r is Eq2, the procedure follows similarly as the case for Eq1 above.

(d) If r is a unary rule except for >∗L, Eq1, and Eq2, the proof is transformed as follows:

Π1

Γ1 ` x : A; ∆1 r
Γ ` x : A; ∆

Π2

Γ′;x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Π1

Γ1 ` x : A; ∆1

Π2

Γ′;x : A ` ∆′
cut

Γ1; Γ′ ` ∆1; ∆′
r

Γ; Γ′ ` ∆; ∆′

Note that as all our rules except >∗L, Eq1, and Eq2 do not modify side structures,
Γ′ and ∆′ in the premise of r are not changed. The cut rank of the original cut is
(|x : A|, |Π1|+ 1 + |Π2|), whereas the cut rank of the new cut is (|x : A|, |Π1|+ |Π2|), so
the cut height reduces.

(e) If r is a binary inference, we can transform the derivation similarly.

Π1

Γ1 ` x : A; ∆1

Π2

Γ2 ` x : A; ∆2 r
Γ ` x : A; ∆

Π3

Γ′;x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Π1

Γ1 ` x : A; ∆1

Π3

Γ′;x : A ` ∆′
cut

Γ1; Γ′ ` ∆1; ∆′

Π2

Γ2 ` x : A; ∆2

Π3

Γ′;x : A ` ∆′
cut

Γ2; Γ′ ` ∆2; ∆′
r

Γ; Γ′ ` ∆; ∆′

14

The cut rank of the original cut is (|x : A|,max(|Π1|, |Π2|) + 1 + |Π3|), and that of the
new two cuts are (|x : A|, |Π1| + |Π3|) and (|x : A|, |Π2| + |Π3|) respectively. Thus the
cut heights are reduced.

2. The cut formula is only principal in the left premise. We only consider the last rule in the
right branch. The proof of this case is symmetric to those in Case 1.

3. The cut formula is principal in both premises. We do a case analysis on the main connective
of the cut formula. If the main connective is additive, then there is no need to substitute any
labels. We only show the case for ∧ here.

Π1

Γ ` x : A; ∆

Π2

Γ ` x : B; ∆
∧R

Γ ` x : A ∧B; ∆

Π3

Γ′;x : A;x : B ` ∆′
∧L

Γ′;x : A ∧B ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Π1

Γ ` x : A; ∆

Π2

Γ ` x : B; ∆

Π3

Γ′;x : A;x : B ` ∆′
cut

Γ; Γ′;x : A ` ∆; ∆′
cut

Γ; Γ; Γ′ ` ∆; ∆; ∆′
Lemma 3.5

Γ; Γ′ ` ∆; ∆′

In this case, cut is reduced to applications on smaller formulae, therefore the cut rank of the
cut rule reduces.

There is an asymmetry in the rules for >∗. That is, the left rule for >∗ requires that the label
w of >∗ cannot be ε, whereas the right rule for >∗ restricts the label of >∗ to be ε only. As a
consequence, when the cut formula is >∗, it cannot be the principal formula of both premises
at the same time. Therefore the cases for >∗ are covered in the proof above.

When the main connective of the cut formula is ∗ or −∗ , the case is more complicated. For
∗, we have the following two derivations as the premises of the cut rule:

Π1

(x, y . z); Γ ` x : A; z : A ∗B; ∆

Π2

(x, y . z); Γ ` y : B; z : A ∗B; ∆
∗R

(x, y . z); Γ ` z : A ∗B; ∆

and

Π3

(x′, y′ . z); Γ′;x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗B ` ∆′

And the cut rule gives the end sequent (x, y . z); Γ; Γ′ ` ∆; ∆′. The cut rank of this cut is
(|A ∗B|,max(|Π1|, |Π2|) + 1 + |Π3|+ 1).

We use several cuts with smaller ranks to derive (x, y . z); Γ; Γ′ ` ∆; ∆′ as follows. Firstly,

15

Π1

(x, y . z); Γ ` x : A; z : A ∗B; ∆

Π3

(x′, y′ . z); Γ′;x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗B ` ∆′
cut

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′

The cut rank of this cut is (|A ∗B|, |Π1|+ |Π3|+ 1)), thus is less than the original cut.

The second cut works similarly.

Π2

(x, y . z); Γ ` y : B; z : A ∗B; ∆

Π3

(x′, y′ . z); Γ′;x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗B ` ∆′
cut

(x, y . z); Γ; Γ′ ` y : B; ∆; ∆′

The third cut works on a smaller formula.

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′
Π′3

(x, y . z); Γ′;x : A; y : B ` ∆′
cut

(x, y . z); (x, y . z); Γ; Γ′; Γ′; y : B ` ∆; ∆′; ∆′

The cut formula is x : A, thus the cut rank of this cut is less regardless of the height of the
derivations. Note that in the Π3 branch, the ∗L rule requires that the relation (x′, y′ . z) is
newly created, so x′ and y′ cannot be ε and they cannot be in Γ′ or ∆′. Therefore we are
allowed to use the substitution lemma to get a derivation Π′3 of (x, y . z); Γ′;x : A; y : B ` ∆′

by just substituting x′ for x and y′ for y.

Finally we cut on another smaller formula y : B.

(x, y . z); Γ; Γ′ ` y : B; ∆; ∆′ (x, y . z); (x, y . z); Γ; Γ′; Γ′; y : B ` ∆; ∆′; ∆′
cut

(x, y . z); (x, y . z); (x, y . z); Γ; Γ; Γ′; Γ′; Γ′ ` ∆; ∆; ∆′; ∆′; ∆′

The cut rank of this cut is less than the original cut. We then apply the admissibility of
contraction to derive (x, y . z); Γ; Γ′ ` ∆; ∆′. The case for −∗ is similar.

4 Localising structural rules

Structural rules such as E,A,U can be applied to any sequent that contains suitable relational
atoms, just as weakening and contraction in LK can be applied to any sequent that contains at
least one formula. Thus each structural rule creates many non-deterministic choices in proof search.
One way to reduce this non-determinism is to separate the structural rules into a constraint system
as outlined in Section 5. We proceed via the intermediate calculi detailed in this section.

As a first step towards designing an effective proof search procedure for LSBBI , we need to
restrict the use of these structural rules so that their applications in proof search are driven by
logical rules, thereby reducing the non-determinism in proof search.

We note the fact that the structural rules in LSBBI can permute upwards through all other
rules except for id, >∗R, ∗R, and −∗ L. We refer to these four rules as positive rules, and refer to
the other logical rules in LSBBI as negative rules. The main reason is, all negative rules do not rely
on relational atoms. This is formalised in the following lemma, and proved in Appendix A.7.

16

Lemma 4.1. The structural rules in LSBBI can permute upwards through negative rules in LSBBI .

Now we design a more compact proof system where applications of structural rules are separated
into a special entailment relation for relational atoms and equivalence of labels. Such a special
entailment can be seen as a “condition” in a rule application. To be specific, since all the structural
rule applications can permute upwards until they meet positive rule applications, we would apply
negative rules, backwards, as much as possible in the proof search, and only apply structural rules,
backwards, when they are required by positive rules. In this sense, structural rule applications are
encapsulated in positive rule applications as “conditions” of the form “to apply this positive rule,
some structural rules have to be applied first”. We shall see in the next section that proof search
in this proof system can be separated into two phases: guessing the shape of the proof tree, and
deriving the relational atoms needed. The latter will be phrased using a constraint system.

In this section we localise the structural rules in two steps: we first deal with Eq1 and Eq2, and
then the other structural rules.

4.1 Localising Eq1 and Eq2

Allowing substitutions in a proof rule simplifies the cut-elimination proof for LSBBI . However,
for proof search, this creates a problem as Eq1 and Eq2 do not permute over certain rules that
require matching of two labels (e.g., ∗R or −∗ L). Our first intermediate proof system LS eBBI aims
to remove substitutions from LSBBI . Instead, the equality between labels is captured via a special
entailment relation. To define its inference rules, we first need a few preliminary definitions.

A structural rule r can be seen as defining a relation R as follows: (G1, θ,V,G2) ∈ R iff there is
an instance of r such that

• the set of principal relational atoms (cf. Section 2.2 for the definition of principal relational
atoms) of the instance is G1;

• the substitution applied to the premise of the instance is θ;
• the set of fresh labels created in the premise of the instance is V; and
• the set of new relational atoms in the premise of the instance is G2.

In the following, we shall write r(G1, θ,V,G2) to denote that (G1, θ,V,G2) ∈ R as defined above. For
example, we have both U({}, [], {x}, {(x, ε . x)}) and U({}, [], {}, {(x, ε . x)}), which are justified
respectively by the following instances of U :

(x, ε . x); (a, b . c) ` a : F
U

(a, b . c) ` a : F

(x, ε . x); (x, y . z) ` y : G
U

(x, y . z) ` y : G

Note that the rule U does not restrict x to be among the labels occuring in the conclusion, so one
can introduce a new label. Similarly, we have A({(x, y .z), (u, v .x)}, [], {w}, {(u,w.z), (y, v .w)})
which is justified by, e.g., the following instance of A:

(x, y . z); (u, v . x); (u,w . z), (y, v . w);x : F ` y : G
A

(x, y . z); (u, v . x);x : F ` y : G

and Eq1({(e, w . w′)}, [w′/w], { }, { }), which is justified by, e.g.,

(ε, w′ . w′);w′ : F ` w′ : G
Eq1

(ε, w . w′);w : F ` w′ : G

17

G `E (w1 = w2)
id

G||Γ;w1 : P ` w2 : P ; ∆

(ε, w . ε);G ` ∆
>∗L

G||Γ;w : >∗ ` ∆

G `E (w = ε)
>∗R

G||Γ ` w : >∗; ∆

(x, y . z′);G′||Γ ` x : A; z : A ∗B; ∆ (x, y . z′);G′||Γ ` y : B; z : A ∗B; ∆ G `E (z = z′)
∗R

(x, y . z′);G′||Γ ` z : A ∗B; ∆

(x, y′ . z);G′||Γ; y : A−∗ B ` x : A; ∆ (x, y′ . z);G′||Γ; y : A−∗ B; z : B ` ∆ G `E (y = y′)
−∗ L

(x, y′ . z);G′||Γ; y : A−∗ B ` ∆

(u,w . z); (y, v . w); (x, y . z); (u, v . x′);G′||Γ ` ∆ G `E (x = x′)
A

(x, y . z); (u, v . x′);G′||Γ ` ∆

(x,w . x′); (y, y . w); (x, y . x′);G′||Γ ` ∆ G `E (x = x′)
AC

(x, y . x′);G′||Γ ` ∆

G is the multiset of relational atoms in the left hand side of the conclusion sequent.
In each rule, the entailment `E is not a premise, but a condition on the rule.

Figure 5: The changed rules in LS eBBI .

We call r(G1, θ,V,G2) an abstract instance of the rule r. The set of abstract instances of structural
rules are ranged over by r.

Given a set of relational atoms G, we denote with LV (G) the set of label variables in G. Let σ
be a sequence (list) of abstract instances of structural rules [r1; · · · ; rn]. Given a set of relational
atoms G, the result of the application of σ to G, denoted by S(G, σ), is defined inductively as follows
where @ stands for sequence (list) concatenation:

S(G, σ) =

 G if σ = []
S(Gθ ∪ G2, σ

′) if G1 ⊆ G, σ = [r(G1, θ,V,G2)]@σ′ and LV (G) ∩ V = ∅
undefined otherwise

Given a sequence of structural rule applications σ = [r1(G1, θ1,V1,G′1); · · · ; rn(Gn, θn,Vn,G′n)], we
denote with subst(σ) the composite substitution θ1 ◦ · · · ◦ θn, where t(θ1 ◦ θ2) means (tθ1)θ2.

Definition 4.1. Let G be a set of relational atoms. The entailment relation G `E (u = v) holds
iff there exists a sequence σ of abstract instances of Eq1 or Eq2 such that S(G, σ) is defined, and
uθ = vθ, where θ = subst(σ).

We now define the proof system LS eBBI as LSBBI \ {Eq1, Eq2} (i.e., LSBBI without rules
Eq1, Eq2) where certain rules are modified according to Figure 5. We write G||Γ ` ∆ to em-
phasize that the left hand side of a sequent is partitioned into two parts: G, which contains only
relational atoms, and Γ, which contains only labelled formulae. Note that the new >∗L rule does
not modify any labels, instead, the relational atom (ε, w . ε) in the premise ensures that the deriv-
ability of (w = ε) is preserved. The point of this intermediate step is to avoid label substitutions
in the proof system.

Theorem 4.2. A sequent Γ ` ∆ is derivable in LSBBI if and only if it is derivable in LS eBBI .

Proof. (Outline) One direction, from LS eBBI to LSBBI is straightforward, as `E is essentially just
a sequence of applications of Eq1 and Eq2. The other direction can be proved by showing that Eq1

18

G `R (w1 = w2)
id

G||Γ;w1 : P ` w2 : P ; ∆

G `R (w = ε)
>∗R

G||Γ ` w : >∗; ∆

S(G, σ)||Γ ` x : A;w : A ∗B; ∆ S(G, σ)||Γ ` y : B;w : A ∗B; ∆
σ

G `R (x, y . w)
∗R†

G||Γ ` w : A ∗B; ∆

S(G, σ)||Γ;w : A−∗ B ` x : A; ∆ S(G, σ)||Γ;w : A−∗ B; z : B ` ∆
σ

G `R (x,w . z)
−∗ L‡

G||Γ;w : A−∗ B ` ∆

The entailment `R is a condition rather than a premise, and some rules require its derivation σ.

Figure 6: Changed rules in LS sf
BBI .

and Eq2 are admissible in LS eBBI . Detailed proofs are given in Appendix A.8, A.9, for soundness
and completeness respectively.

4.2 Localising the rest of the structural rules

As a second step, we isolate the other structural rules into a separate entailment relation, as we did
with Eq1 and Eq2, giving another intermediate system LS sf

BBI .

Definition 4.2 (Relation Entailment `R). The entailment relation `R has the following two forms:

1. G `R (w1 = w2) is true iff there is a sequence σ of abstract instances of E, U , A, AC so that
S(G, σ) `E (w1 = w2).

2. G `R (w1, w2 .w3) is true iff there is a sequence σ of abstract instances of E, U , A, AC so that
(w′1, w

′
2 . w

′
3) ∈ S(G, σ) and the following hold: S(G, σ) `E (w1 = w′1), S(G, σ) `E (w2 = w′2),

and S(G, σ) `E (w3 = w′3).

In each case, we say that σ is a derivation of the entailment relation involved.

The entailment `R is stronger than `E . For example, if G only contains (x, ε . y), then G 6`E
(x = y); but G `R (x = y) by applying E to obtain (ε, x . y), then apply Eq1 or Eq2 on the new
relational atom.

The changed rules in the second intermediate system LS sf
BBI are given in Figure 6.

The following is an immediate result, the proof is divided in two parts for soundness and com-
pleteness, detailed in Appendix A.11 and A.12 respectively.

Theorem 4.3. A sequent Γ ` ∆ is derivable in LS eBBI if and only if it is derivable in LS sf
BBI .

As a consequence of Theorem 4.2 and 4.3, we can also obtain the equivalence between LSBBI

and LS sf
BBI , the latter will be used in the next section. Figure 7 shows example derivations in the

intermediate systems LS eBBI and LS sf
BBI respectively in contrast to the derivation in Figure 2.

19

· · · `E (w2 = w2)
id

· · · ;w2 : r ` w2 : r; · · ·
(ε, w3 . ε); (w3, w4 . w1); · · · `E (w4 = w1)

id

· · · ;w4 : q ` w1 : q; · · ·
∗R

(w2, w1 . w0); · · · ;w3 : p;w3 : >∗;w4 : q;w2 : r ` w0 : r ∗ q
E

(ε, w3 . ε); (w3, w4 . w1); (w1, w2 . w0);w3 : p;w3 : >∗;w4 : q;w2 : r ` w0 : r ∗ q
>∗L

(w3, w4 . w1); (w1, w2 . w0);w3 : p;w3 : >∗;w4 : q;w2 : r ` w0 : r ∗ q
∧L

(w3, w4 . w1); (w1, w2 . w0);w3 : p ∧ >∗;w4 : q;w2 : r ` w0 : r ∗ q
∗L × 2

w0 : ((p ∧ >∗) ∗ q) ∗ r ` w0 : r ∗ q
→ R

` w0 : (((p ∧ >∗) ∗ q) ∗ r)→ (r ∗ q)

· · · `R (w2 = w2)
id

(w2, w1 . w0); · · · ; || · · · ;w2 : r ` w2 : r; · · ·
(ε, w3 . ε); (w3, w4 . w1); · · · `R (w4 = w1)

id

(w2, w1 . w0); · · · || · · · ;w4 : q ` w1 : q; · · · C
∗R

(ε, w3 . ε); (w3, w4 . w1); (w1, w2 . w0)||w3 : p;w3 : >∗;w4 : q;w2 : r ` w0 : r ∗ q
>∗L

(w3, w4 . w1); (w1, w2 . w0)||w3 : p;w3 : >∗;w4 : q;w2 : r ` w0 : r ∗ q
∧L

(w3, w4 . w1); (w1, w2 . w0)||w3 : p ∧ >∗;w4 : q;w2 : r ` w0 : r ∗ q
∗L × 2

w0 : ((p ∧ >∗) ∗ q) ∗ r ` w0 : r ∗ q
→ R

` w0 : (((p ∧ >∗) ∗ q) ∗ r)→ (r ∗ q)
where C ::= (w1, w2 . w0); · · · `R (w2, w1 . w0)

Figure 7: Derivations for (((p ∧ >∗) ∗ q) ∗ r)→ (r ∗ q) in LS eBBI (top) and LS sf
BBI (bottom).

5 Mapping proof search to constraint solving

We now consider a proof search strategy for LS sf
BBI . As we have isolated all the structural rules into

the entailment relation `R, proof search in LS sf
BBI consists of guessing the shape of the derivation

tree, and then checking that each entailment constraint `R can be solved. The latter involves
guessing a splitting of labels in the ∗R and −∗ L rules which also satisfies the equality constraints
in the id and >∗R rules. We formalise this via a symbolic proof system, where constraint solving
is handled lazily, via the introduction of free variables which are essentially existential variables (or
logic variables) that must be instantiated to concrete labels satisfying all the entailment constraints
in the proof tree, for a symbolic derivation to be sound. The idea of using free variables can be
found in the literature, e.g., [1], in which a benefit is that “the use of free variables generates a
smaller search space”. We shall see in the following sections that our free variable system, although
different from existing ones in certain aspects, can also narrow down the search space when zero-
premise rules can give exact equality constraints so that the constraints generated by logical rules
can be solved based on those generated by zero-premise rules. This means that the applications
of structural rules (hidden in the logical rules) are not only driven by logical rules, but also by
zero-premise rules.

Free variables are denoted by x, y and z. We use u,v,w to denote either labels or free variables,
and a, b, c are ordinary labels. A symbolic sequent is just a sequent but possibly with occurrences of
free variables in place of labels. We shall sometimes refer to the normal (non-symbolic) sequent as a
ground sequent to emphasize the fact that it contains no free variables. The symbolic proof system
FVLSBBI is given in Figure 8. The rules are mostly similar to LS sf

BBI , but lacking the entailment
relations `R . Instead, new free variables are introduced when applying ∗R and −∗ L backward.
Notice also that in FVLSBBI , the ∗R and −∗ L rules do not compute the set S(G, σ). So the

20

relational atoms in FVLSBBI are those that are created by ∗L,−∗ R,>∗L. In the following, given a
derivation in FVLSBBI , we shall assume that the free variables that are created in different branches
of the derivation are pairwise distinct. We shall sometimes refer to a derivation in FVLSBBI simply
as a symbolic derivation.

Initial Sequent:
id

G||Γ;w1 : P ` w2 : P ; ∆

Logical Rules:
⊥L

G||Γ;w : ⊥ ` ∆
>R

G||Γ ` w : >; ∆

G; (ε,w . ε)||Γ ` ∆
>∗L

G||Γ;w : >∗ ` ∆

>∗R
G||Γ ` w : >∗; ∆

G||Γ;w : A;w : B ` ∆
∧L

G||Γ;w : A ∧B ` ∆

G||Γ ` w : A; ∆ G||Γ ` w : B; ∆
∧R

G||Γ ` w : A ∧B; ∆

G||Γ ` w : A; ∆ G||Γ;w : B ` ∆
→ L

G||Γ;w : A→ B ` ∆

G||Γ;w : A ` w : B; ∆
→ R

G||Γ ` w : A→ B; ∆

G; (a, b .w)||Γ; a : A; b : B ` ∆
∗L†

G||Γ;w : A ∗B ` ∆

G; (a,w . c)||Γ; a : A ` c : B; ∆
−∗ R‡

G||Γ ` w : A−∗ B; ∆

G||Γ ` x : A;w : A ∗B; ∆ G||Γ ` y : B;w : A ∗B; ∆
∗R]

G||Γ ` w : A ∗B; ∆

G||Γ;w : A−∗ B ` x : A; ∆ G||Γ;w : A−∗ B; z : B ` ∆
−∗ L\

G||Γ;w : A−∗ B ` ∆

†: a and b must be fresh in ∗L ‡: a and c must be fresh in −∗ R
]: x and y are new free variables in ∗R \: x and z are new free variables in −∗ L

Figure 8: Labelled Sequent Calculus FVLSBBI for Boolean BI.

An equality constraint is an expression of the form G `?
R (u = v), and a relational constraint

is an expression of the form G `?
R (u,v . w). In both cases, we refer to G as the left hand side of

the constraints, and (u = v) and (u,v .w) as the right hand side. Constraints are ranged over by
c, c′, c1, c2, etc. Given a constraint c, we write G(c) for the left hand side of c. A constraint system
is just a multiset of constraints. We write G `?

R C for either an equality or relational constraint.
We write fv(c) to denote the set of free variables in c, and fv(C) to denote the set of free variables
in a set of constraints C.

Definition 5.1 (Constraint systems). A constraint system is a pair (C,�) of a finite multiset of
constraints and a partial order on elements of C satisfying:

Monotonicity : c1 � c2 implies G(c1) ⊆ G(c2).

A constraint system is well-formed if it also satisfies

Unique variable origin : ∀x in C, there exists a unique constraint occurrence c(x) = Gx `?
R

(u,v . w) s.t. x occurs in (u,v . w), but not in Gx, and x does not occur in any c′ where

21

c′ 6= c(x) and c′ � c(x). Such a c(x) is the origin of x. Furthermore, for any free variable x
and any constraint c′, if x occurs in G(c′), then c(x) � c′.

The definition of constraint systems in Definition 5.1 is inspired by a similar definition used
in security protocol analysis, see e.g., [8, 23], which involves proof search in certain proof systems
representing intruder deduction capabilities. There the constraints are linearly ordered whereas in
our case they are partially ordered.

Notice that C is a multiset, rather than a set. We could have defined C as a set, but the definition
of composition of constraint systems (Definition 5.8) would be more complicated. Thus in C there
can be more than one occurrence of the same constraint c.3 We write C1]C2 to denote the multiset
union of C1 and C2. We shall use the same symbol for a constraint and its occurrences. We shall
often refer to a constraint occurrence as simply a constraint when it is clear from the context of
discussions that we are referring to an occurrence rather than a constraint.

In a well-formed constraint system (C,�), in every minimum constraint c, with respect to �,
G(c) must be ground (see Lemma 5.2). The existence of such a c is important in the definition of
solutions for a well-formed constraint system, and in the proof that the symbolic proof system is
sound with respect to its concrete counterpart (i.e., the derivation for the same formula in LS sf

BBI).
From now on, we shall denote with c(x) the constraint occurrence from where x originates, as

defined in the above definition. We use the letter C to range over constraint systems.
We write ci ≺ cj when ci � cj and ci 6= cj . Further, we define a direct successor relation l as

follows: ci l cj iff ci ≺ cj and there does not exist any ck such that ci ≺ ck ≺ cj .
During proof search, associated constraints are generated as follows.

Definition 5.2. To a given symbolic derivation Π, we define a multiset of constraints C(Π) by
structural induction on Π. We shall assume that variables introduced in instances of ∗R and −∗ L
in Π are pairwise distinct. In the following, for each instance of the rules, we use the same naming
schemes for labels and variables as in Figure 8. We distinguish several (base/inductive) cases based
on the lowest rule of Π:

id C(Π) = {G `?
R (w1 = w2)}

>∗R C(Π) = {G `?
R (w = ε)}

∗R C(Π) = C(Π1)] C(Π2)] {G `?
R (x,y .w)} where the left premise derivation is

Π1 and the right-premise derivation is Π2

−∗ L C(Π) = C(Π1)] C(Π2)] {G `?
R (x,w . y)} where the left premise derivation is

Π1 and the right-premise derivation is Π2

– If Π ends with any other rule, with premise derivations {Π1, . . . ,Πn}, then
C(Π) = C(Π1)] · · ·] C(Πn).

Proof search in the free variable system is a refutation procedure. The ternary relational atoms
generated by >∗L, ∗L, and −∗ R are the base knowledge about the monoidal semantics; the con-
straints generated by ∗R and −∗ L give hints on what are further needed to falsify the end sequent,
these constraints need to be solved by grounding the free variables to labels. Zero-premise rules re-
fute that the ternary relational atoms generated along a branch cannot form a counter-model. The
constraint generated by the rule id or >∗R can close a branch whenever the constraint is satisfied.

Each constraint c ∈ C(Π) corresponds to a rule instance r(c) in Π where c is generated. The
ordering of the rules in the derivation tree of Π then naturally induces a partial order on C(Π). That

3Another way of looking at this is to consider a set of pairs of the form (i, c) where i is an identifier (e.g., a natural
number) and c is a constraint. Multisets offer a more convenient abstraction.

22

is, let �Π be an ordering on C(Π) defined as follows: c1 �Π c2 iff the conclusion of r(c1) appears in
the path from the root sequent to the conclusion of r(c2). Then obviously �Π is a partial order.

Lemma 5.1. Let Π be a symbolic derivation. Then (C(Π),�Π) is a constraint system. Moreover,
if the root sequent is ground, then (C(Π),�Π) is well-formed.

Proof. Each constraint in C(Π) is associated with an instance of a rule in Π; this induces a partial
order on the constraints as follows: c1 � c2 iff the rule instance where c1 originates from appears
in the path from the root to the rule instance where c2 originates from, in the derivation tree of Π.
It is easy to see that this gives us a partial order. The unique variable origin property of C(Π) is
also satisfied by the fact that new variables can only be created at ∗R and −∗ L. So the minimum
constraint for each variable is the constraint generated by the rule instance where these variables
are created.

Given a symbolic derivation Π, we define C(Π) as the constraint system (C(Π),�Π) as defined
above. A consequence of Lemma 5.1 is that if C(Π) 6= { }, then there exists a minimum constraint
c, w.r.t. the partial order �Π, such that G(c) is ground.

We now define what it means for a constraint system to be solvable. The complication arises
when we need to capture that (ternary) relational atoms created by the solution need to be accu-
mulated along each branch in the proof search in order to guarantee the soundness of FVLSBBI . A
free-variable substitution θ is a total mapping from free variables to free-variables or labels, which
is an identity map on all variables except for a finite number of them. The domain of a substitution
θ, denoted by dom(θ), is defined as dom(θ) = {x | θ(x) 6= x}. Given θ, θ′ with dom(θ′) ⊆ dom(θ),
and a set V of free variables, θ ↑ V is the substitution obtained from θ by intersecting its domain
with V ; and θ \ θ′ is the result of θ “subtract” θ′; formally:

x(θ ↑ V) =

{
xθ if x ∈ V
x otherwise.

x(θ \ θ′) =

{
xθ if x 6∈ dom(θ′)
x otherwise.

Definition 5.3 (Simple constraints and their solutions). A constraint c is simple if its left hand
side G(c) contains no free variables. A solution (θ, σ) to a simple constraint c is a substitution θ
and a sequence σ of abstract instances of structural rules such that:

• If c is G `?
R (u = v) then σ is a derivation of G `R (uθ = vθ).

• If c is G `?
R (u,v .w) then σ is a derivation of G `R (uθ,vθ .wθ).

Lemma 5.2. If (C,�) is well-formed, the minimum constraints in C are simple constraints.

Proof. Suppose otherwise, i.e., there exists a minimum c ∈ C such that G(c) contains a free variable
x. By the unique variable origin property (Definition 5.1), there exists c(x) such that x is not free
in G(c(x)) and c(x) � c. Also by Definition 5.1, x cannot occur in c(x), so c(x) is not c, and we
have c(x) ≺ c, which contradicts the minimality of c. Therefore G(c) must be ground.

From the above definition, a simple constraint G `?
R (u = v) is solvable if there is a series of

structural rule applications on G and a series of free variable substitutions θ, such that uθ = vθ.
Since G only contains labels, the structural rule applications in this case are often not needed. For
example, the simple constraint

(w1, w2 . w3) `?
R (w1 = x)

23

is solvable by applying no structural rules and only assigning x to w1 in the free variable substitution
θ. The case for a ternary relation on the r.h.s. is defined similarly, but this case often involves
structural rule applications. For example, the simple constraint

(w1, w2 . w0); (w3, w4 . w1) `?
R (w4, w2 . x)

can be solved by letting σ be [A(· · ·);E(· · ·)] as in the following structural rule applications:

(w4, w2 . w5); · · ·
E

(w3, w5 . w0); (w2, w4 . w5); · · ·
A

(w1, w2 . w0); (w3, w4 . w1); · · ·

And the free variable substitution θ would be [w5/x].

Definition 5.4 (Restricting a constraint system). Let C = (C,�) be a well-formed constraint
system, and c be a minimum (simple) constraint occurrence in C. Let (θ, σ) be a solution to c and
G′ = S(G(c), σ), and let Cc be C with the constraint occurrence c removed. Define a function f on
constraints:

f(c′) =

{
(G′ ∪ Gθ `?

R Cθ) if c′ = (G `?
R C) ∈ Cc and c � c′,

c′ otherwise.

The restriction of C by (c, θ, σ), written C ↑ (c, θ, σ), is the pair (C′,�′), where (1) C′ = {f(c′) |
c′ ∈ Cc} and (2) f(c1) �′ f(c2) iff c1 � c2.

The proof of the following lemma is straightforward from Definition 5.4.

Lemma 5.3. The pair C ↑ (c, θ, σ) as defined in Definition 5.4 is a well-formed constraint system.

Definition 5.5 (Solution to a well-formed constraint system). Let C = ({c1, . . . , cn},�) be a well-
formed constraint system. A solution (θ, {σ1, . . . , σn}) to C is a substitution and a set of sequences
of structural rules, such that:

If n = 0 then (θ, {σ1, . . . , σn}) is trivially a solution.

If n ≥ 1 then there must exist some minimum (simple) constraint in C. For any minimum constraint
ci, let θi = θ ↑ fv(ci), then (θi, σi) is a solution to ci, and (θ\θi, {σ1, . . . , σn}\σi) is a solution
to C ↑ (ci, θi, σi).

If a constraint system C = ({c1, · · · , cn},�) has a solution (θ, {σ1, · · · , σn}), then there is a
solution to each ci, which is computed recursively from the minimum constraints in C, as defined
in Definition 5.5. It is easy to see that every c ∈ {c1, · · · , cn} has a solution of the form (θc, σ), for
some θc, where σ ∈ {σ1, . . . , σn}. Moreover, σ is uniquely related to c. In the following, given such
a constraint c, we shall write dev(c) to refer to that sequence of rules σ in its solution.

Example 5.1. We now give an example of how to prove a formula using the free variable system.
Suppose we want to prove ((P ∗ Q) ∗ R) → (P ∗ (Q ∗ R)), where P , Q and R are propositional
variables. Using FVLSBBI , we build a symbolic derivation as in Figure 9. Note that this derivation
is generated automatically from our theorem prover which uses a0, a1, · · · for label variables, hence
the end-sequent is of the form a0 : F where a0 stands for the label variable w and some of the
indices of variables may not be contiguous. We subscript ` with a number i to indicate that the
rule applied on this sequent generates the constraint ci. The set of constraints C = {c1, · · · , c5} are

24

Let G = {(a1, a2 . a0); (a3, a4 . a1)} and Γ1 := {a2 : R ; a3 : P} and Γ2 := {a3 : P ; a4 : Q} in

idG||a2 : R; a3 : P ; a4 : Q `5 x5 : P

idG||Γ1; a4 : Q `4 x7 : Q
idG||a2 : R; Γ2 `3 x8 : R
∗R

G||a2 : R; a3 : P ; a4 : Q `2 x6 : Q ∗R
∗R

G||a2 : R; a3 : P ; a4 : Q `1 a0 : P ∗ (Q ∗R)
∗L

(a1, a2 . a0)||a1 : P ∗Q; a2 : R ` a0 : P ∗ (Q ∗R)
∗L

a0 : (P ∗Q) ∗R ` a0 : P ∗ (Q ∗R)
→ R

` a0 : ((P ∗Q) ∗R)→ (P ∗ (Q ∗R))

Figure 9: A symbolic derivation for ((P ∗Q) ∗R)→ (P ∗ (Q ∗R)).

generated from this derivation as below:
c5 : (a1, a2 . a0); (a3, a4 . a1) `R (a3 = x5)
c4 : (a1, a2 . a0); (a3, a4 . a1) `R (a4 = x7)
c3 : (a1, a2 . a0); (a3, a4 . a1) `R (a2 = x8)
c2 : (a1, a2 . a0); (a3, a4 . a1) `R (x7,x8 . x6)
c1 : (a1, a2 . a0); (a3, a4 . a1) `R (x5,x6 . a0).

The partial order � on these constraints is based on the order of rule applications in the symbolic
derivation in Figure 9. Thus we obtain that c1 � c2, c1 � c5, c2 � c3, and c2 � c4. By Lemma 5.1,
the constraint system (C,�) is well-formed.

The naive way to solve a constraint system would start by solving the minimum constraint (i.e.,
c1), then solve the other constraints in the partial order �. Finally, if the constraints generated by
zero-premise rules can be solved based on the existing free variable substitutions, then we obtain
a solution to the constraint system; otherwise we have to backtrack and try to solve previous
constraints using different structural rule applications and/or free variable substitutions.

We have not introduced a method to solve the constraints yet, the next section will give a
heuristic method. For now let us just non-deterministically guess the solutions, starting from the
minimum constraint c1. If we were to solve c1 with the solution ({x5 7→ a0,x6 7→ a11}, {}), then
we would have trouble when solving the constraint c5, because (a3 = a0) cannot be derived by any
structural rule applications. Backtracking to c1, suppose the oracle says we should apply structural
rules on G(c1) as below:

(a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (x5,x6 . a0)
A

(a1, a2 . a0); (a3, a4 . a1) `R (x5,x6 . a0)

where w is a fresh label created by the A application. Then c1 can be solved by the solution
({x5 7→ a3,x6 7→ w}, {A({(a1, a2 . a0); (a3, a4 . a1)}, [], {w}, {(a3, w . a0); (a2, a4 . w)})}). By
Def. 5.4, this solution restricts the constraints system as follows:

c5 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a3 = a3)
c4 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a4 = x7)
c3 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a2 = x8)
c2 : (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (x7,x8 . w).

The next step is to use the rule E to create (a4, a2 . w) from (a2, a4 . w). The constraint c2 can
then be solved by the solution ({x7 7→ a4,x8 7→ a2}, {E({(a2, a4 . w)}, [], {}, {(a4, a2 . w)})}). The
constraint system is now:

c5 : (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a3 = a3)
c4 : (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a4 = a4)
c3 : (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `R (a2 = a2).

25

The remaining constraints can be trivially solved by the solution ({}, {}). Since the constraint
system is solvable, the symbolic derivation in Figure 9 corresponds to a valid proof of the formula by
the coming soundness and completeness theorems. The reader can check that the above solutions
satisfy the conditions in Def. 5.5.

Theorem 5.4 (Soundness). Let Π be a symbolic derivation of a ground sequent G||Γ ` ∆. If C(Π)

is solvable, then G||Γ ` ∆ is derivable in LS sf
BBI .

Proof. By induction on the height n of derivation Π. The basic idea of the proof is that one
progressively “grounds” a symbolic derivation, starting from the root of the derivation. At each
inductive step we show that grounding the premises corresponds to restricting the constraint system
induced by the symbolic derivation.
Base case: n = 1. In this case, we can only use a zero-premise rule to prove the sequent. Since the
sequent is ground, there are no free variables. Thus the constraint generated by the rule application
is a simple constraint, of the form G `?

R (a = b) or G `?
R (a = ε). A solution of this constraint

is simply a derivation σ of G `R (a = b) (resp. G ` (a = ε). In either case, this translates

straightforwardly into a derivation in LS sf
BBI with the same rule.

Inductive case: n > 1. This can be done by a case analysis of the last rule application in Π. We
demonstrate the case for ∗R, where a constraint is generated. The case for −∗ L is analogous, and
the other cases are easy since we can use the induction hypothesis directly. Suppose Π runs as
follows.

Π1

G||Γ ` x : A;w : A ∗B; ∆

Π2

G||Γ ` y : B;w : A ∗B; ∆
∗R

G||Γ ` w : A ∗B; ∆

Suppose C(Π) = ({c1, . . . , ck},�), for some k ≥ 1. Suppose that the constraint generated by
this rule application is G `?

R (x,y . w) and it corresponds to ci for some i ∈ {1, . . . , k}. By the
assumption, there is a solution (θ, {σ1, · · · , σk}) for the constraint system C = (C(Π),�Π). Now
ci must be a simple constraint in C, as the end sequent is ground. Let (θi, σi) be the solution to
ci, where θi is a restriction to θ containing x and y, and σi ∈ {σ1, · · · , σk}. By definition of the

solution to a simple constraint, σi is a derivation of G `R (xθi,yθi . w). Therefore in LS sf
BBI , to

derive the end sequent, we apply ∗R backwards:

S(G, σi)||Γ ` xθi : A;w : A ∗B; ∆ S(G, σi)||Γ ` yθi : B;w : A ∗B; ∆
∗R

G||Γ ` w : A ∗B; ∆

The condition on this rule is G `R (xθi,yθi . w). Now we construct the derivation for both
branches in the following way. Firstly we substitute x and y with xθi and yθi respectively in Π1 and
Π2, making the end sequents in the two derivations ground. Let us refer to the modified derivations
as Π′1 and Π′2 respectively. Then we add S(G, σi) to the left hand side of each sequent in Π′1 and Π′2
and each constraint in C(Π′1)]C(Π′2). Let the resultant derivations be Π′′1 and Π′′2 respectively. Now
the end sequents of Π′′1 and Π′′2 are respectively just the same as the two branches we created in the

LS sf
BBI derivation. Moreover, each constraint in C(Π′′1)]C(Π′′2) is in the restricted constraint system

C′ = (C′,�′) = (C(Π),�Π) ↑ (ci, θi, σi), which has a solution (θ \ θi, {σ1, · · · , σk} \ σi), and obeys
the partial order �′. Further, as Π′′1 (resp. Π′′2) uses the same rule applications as in Π1 (resp. Π2),
the order of constraints is preserved. That is, in the constraints system C1 = (C(Π′′1),�Π′′1) (resp.

26

C2 = (C(Π′′2),�Π′′2)), if c �Π′′1 c′ (resp. c �Π′′2 c′) then c �′ c′ in C′. Therefore we can construct the
solution (θ′′1 ,Σ1) to C1 (and analogously to C2) as follows.

θ′′1 = (θ \ θi) ↑ fv(C(Π′′1))

Σ1 = {σ | c ∈ C(Π′′1), σ ∈ {σ1, · · · , σk} \ σi, and σ = dev(c)}.

By the induction hypothesis, we can obtain a LS sf
BBI derivation for each branch.

To prove the completeness of FVLSBBI , we show that for every cut-free derivation Π of a
(ground) sequent in LS sf

BBI , there is a symbolic derivation Π′ of the same sequent such that C(Π′)
is solvable. It is quite obvious that Π′ should have exactly the same rule applications as Π; the only
difference is that some relational atoms are omitted in the derivation, but instead are accumulated
in the constraint system. Additionally, some (new) labels are replaced with free variables. This is
formalised in the following definition.

Definition 5.6. Given a sequent in a LS sf
BBI derivation, let G be the set of its relational atoms,

we define GE as the subset of G that contains those ternary relational atoms created by ∗L, −∗ R,
and >∗L. We define GS = G \ GE . We refer to GE as the essential subset of G, and GS as the
supplementary subset of G.

For a list L, we denote by head(L) the first element in the list L and tail(L) the list of L without
the first element, and end(L) the last element in L. We denote by L1@L2 the concatenation of two
lists L1 and L2, and pre(x) the predecessor of x in a list L, and suc(x) the successor of x in L.

Given a well-formed constraint system (C,�), we can define a partial order �v on free variables
of C as follows: x �v y iff c(x) � c(y). That is, free variables are ordered according to their origins.
The relations ≺v and lv are defined analogously to ≺ and l, i.e., as the non-reflexive subset of �v
and the successor relation.

Definition 5.7 (A thread of variables). Let C = (C,�) be a well-formed constraint system, and
let X be a list of free variables x1, . . . ,xn, where n ≥ 0. Let �v be the partial order on variables,
derived from � . We say X is a thread of free variables of C (or simply a thread of C) iff it satisfies
the following conditions:

1. ∀x ∈ X, x ∈ fv(C)
2. For every i ∈ {1, . . . , n− 1}, xi lv xi+1.
3. If n ≥ 1, then x1 is a minimum element and xn is a maximum element of �v .
4. If n ≥ 1, then c(x1) is a minimum constraint in C.

A thread is effectively those variables that are generated along a certain branch in a FVLSBBI

symbolic derivation. It is not hard to verify that in a valid symbolic derivation in FVLSBBI of a
ground sequent, the set of free variables in any symbolic sequent in the derivation can be linearly
ordered as a thread.

Definition 5.8. Let C = (C1,�1) be a well-formed constraint system, let X be a thread of C1

and C2 = (C2,�2) be a constraint system (may not be well-formed) such that X consists of free
variables in fv(C1)∩fv(C2). Also, assume that every variable x in C2, except for those in X, satisfies
the unique variable origin property, i.e., x originates from a constraint in C2. The composition of
C1 and C2 along the thread X, written C1 ◦X C2, is the constraint system (C,�) such that:

• C = C1] C2; and

27

• Define a relation R as follows: for c1, c2 ∈ C, c1Rc2 iff either one of the following holds:

– c1 �1 c2,

– c1 �2 c2, or

– X is non-empty, y = end(X), c1 = c(y) and c2 ∈ C2.
Then define � to be the transitive closure of R.

This definition basically says that the composition of C1 and C2 along X is obtained by simply
ordering the constraints so that all constraints C2 are greater than c(y), where y is the last variable
in X. If X is empty, then C1 and C2 are independent, and � is simply the union of �1 and �2 .

The following two lemmas follow straightforwardly from the definitions.

Lemma 5.5. Let (C,�) be as defined in Definition 5.8. Then (C,�) is well-formed.

Lemma 5.6. Let C = (C,�) be a well-formed constraint system and let X be a thread of C. Let
Π be a symbolic derivation such that the free variables in its end sequent are exactly those in X.
Then C ◦X C(Π) is well-formed.

Definition 5.9. Let C = (C,�) be a well-formed constraint system and let S = (θ, {~σ}) be its
solution. Let X be a thread of C. Define a set of relational atoms S∗(C, S,X) inductively by the
length n of X as follows:

• If n = 0 then S∗(C, S, []) = ∅
• Suppose n > 0. Let head(X) = x. Then c(x) ∈ C is a minimum constraint of C, and there

exists σx ∈ {~σ} such that (θx, σx) is a solution to c(x), where θx = θ ↑ fv(c(x)). In this case,
S∗(C, S,X) is defined as follows.

S∗(C, S,X) = S(G(c(x)), σx) ∪ S∗(C ↑ (c(x), θx, σx), S′, tail(X))

where S′ = (θ \ θx, {~σ} \ {σx}).

Notice that by the definition of restriction to a constraint system, every time a minimum con-
straint cx is eliminated in the second clause in the above definition, S(G(cx), σx) is also added to
the left hand side of every successor constraints of cx in C. Therefore it is straightforward that the
following proposition holds.

Proposition 5.7. Let C = (C,�) be a well-formed constraint system. Let G = S∗(C, S,X), for

some thread X of C, let xe = end(X) and let S = (θ, {⇀σ}) be a solution to C. Let c = Gc `?
R Cc

be a constraint not in C, such that Gc only contains free variables that occur in C. Let x be a new
variable occurring only on the right hand side of c. Let C′ = (C′,�′) be the following constraint
system:

• C′ = C] {c};
• �′ is the smallest extension of � such that c(xe) l c.

Let (θx, σx) be the solution to c′ = G ∪ Gcθ `?
R Ccθ, S′ = (θ ∪ θx, {

⇀
σ , σx}), and X ′ = X@[x]. Then

S∗(C′, S′, X ′) = S(G ∪ Gcθ, σx).

Theorem 5.8. Let Π be a derivation of a sequent in LS sf
BBI . Then there exists a symbolic derivation

Π′ of the same sequent such that C(Π′) is solvable.

28

Proof. We describe the construction from a LS sf
BBI derivation Π to a FVLSBBI derivation Π′. We

need to prove a stronger invariant: for each sequent GE ;GS ||Γ ` ∆ in Π, if there exists a triple
consisting of:

(1) a symbolic sequent G′E ||Γ′ ` ∆′,
(2) a well-formed constraint system C = (C,�),

(3) and a solution S = (θ, {⇀σ}) to C

such that

(I) there exists a thread X of C consisting of fv(G′E ||Γ′ ` ∆′),
(II) G′Eθ = GE , Γ′θ = Γ, ∆′θ = ∆ and

(III) GE ∪ GS = S∗(C, S,X),

then there is a symbolic derivation Ψ of G′E ||Γ′ ` ∆′ such that C◦XC(Ψ) is well-formed and solvable.
First of all, by Lemma 5.6, since the end sequent in Ψ only contains the free variables occurring

in X, the composition C ◦X C(Ψ) must be well-formed. Thus we only need to show that there is a
solution to this constraint system. We prove this by case analysis on the last rule in Π, and show
that in each case, for each premise of the rule, one can find a triple satisfying the above property,
such that the symbolic sequent(s) in the premise(s), together with the one in the conclusion form
a valid inference in FVLSBBI . We illustrate it here with a case when Π ends with ∗R:

Suppose Π ends with ∗R, where the derivation runs as:

Π1

S((GE ;GS), σ)||Γ ` w1 : A;w : A ∗B; ∆

Π2

S((GE ;GS), σ)||Γ ` w2 : B;w : A ∗B; ∆
∗R

GE ;GS ||Γ ` w : A ∗B; ∆

and the relational entailment is GE ;GS `R (w1, w2 . w). Suppose that the relation in the last item
is derived via σ. Suppose further that we can find a triple consisting of (1) a symbolic sequent
G′E ||Γ′ ` w : A ∗ B; ∆′, (2) a well-formed constraint system C = (C,�), and (3) a solution S =
(θ, {σ1, . . . , σn}) to C, satisfying the following: (I) X is a thread of C consisted of fv(G′E ||Γ′ ` w :
A ∗ B; ∆′), (II) G′Eθ = GE , Γ′θ = Γ, ∆′θ = ∆, w = wθ, and (III) GE ∪ GS = S∗(C, S,X). We
need to show that we can find such triples for the premises, and more importantly, the symbolic
sequents in the premises are related to the symbolic sequent in the conclusion via ∗R. In this case,
the symbolic sequents are simply the following:

1. G′E ||Γ′ ` x : A; w : A ∗B; ∆′, for the left premise,
2. G′E ||Γ′ ` y : A; w : A ∗B; ∆′, for the right premise.

The constraint systems are: C′ = (C]{cj},�′) for both premises, where cj = G′E `?
R (x,y .w) and

�′ is � extended with c(end(X)) �′ cj . The solutions, for both premises, are the tuple S′ = (θ′,Σ)
where θ′ = θ ∪ {x 7→ w1, y 7→ w2} and Σ = {σ1, . . . , σn, σ}. It is guaranteed that θ′ is enough
to make both premises grounded, as x and y are the only two new free variables. The threads of
free variables X1 and X2 for the two premises are naturally X@[x] and X@[y] respectively. By
Proposition 5.7, in each premise, the following holds:

GE ∪ G′S = S(GE ∪ GS , σ) = S(GE ∪ GS ∪ G′Eθ, σ) = S∗(C′, S′, X1) = S∗(C′, S′, X2).

29

So by the induction hypothesis we have a symbolic derivation Π′1 for sequent (1) and a symbolic
derivation Π′2 for sequent (2), such that Cβ1 = C′ ◦X1 C(Π′1) and Cβ2 = C′ ◦X2 C(Π′2) are both
solvable. Suppose the solutions are respectively (θ′∪θ1,Σ∪Σ1) and (θ′∪θ2,Σ∪Σ2). Then construct
Π′ by applying the ∗R rule to Π′1 and Π′2. Note that the variables created in Π′1 are Π′2 are distinct
so their constraints are independent of each other. So we can construct Cp = C(Π′1) ◦∅ C(Π′2) =

(Cp,�p), along an empty thread ∅. Now C(Π′) is obtained as (Cp]{cj},�Π′), where �Π′ is derived
as follows.

• If c �p c′ in Cp, then c �Π′ c′ in C(Π′)

• For any minimum constraint cm in Cp, cj �Π′ cm in C(Π′).

The solution to Cα = C ◦X C(Π′) is constructed as the combination of the solutions to Cβ1

and Cβ2: (θ′ ∪ θ1 ∪ θ2,Σ ∪ Σ1 ∪ Σ2). This construction of the solution is indeed valid, because the
symbolic derivation that gives Cα also yields exactly Cβ1 and Cβ2 (respectively on its two branches
created by the ∗R rule).

6 A heuristic method for proof search

In this section, we first give an example of deriving a formula and solving the generated constraints
in FVLSBBI based on a heuristic method, in which constraints generated by zero-premise rules are
solved first, then the constraints from logical rules are solved based on what we have gained in the
solved constraints. We then extend this idea and formalise it in the remainder of this section.

Consider again the constraint system in Example 5.1, which is generated from the symbolic
derivation in Figure 9. Our heuristic constraint solving method differs from the naive method
shown in Section 5 in two aspects. Firstly, we start by solving the constraints generated by zero-
premise rules. Since the constraints c3, c4, c5 are required by the id rule, we must accept them by
assigning x5,x7,x8 to a3, a4, a2 respectively. Then we are only left with the constraints c1 and
c2. In the following, we shall write (a1, a2 . a0); (a3, a4 . a1) as G1, and (a3,x6 . a0); (a2, a4 . x6)
as G2. Now x6 is the only remaining free variable. We can apply the rule A (upward) on G1 to
obtain (a3, w . a0); (a2, a4 . w), where w is a new label. Then apply the rule E (upward) to obtain
(a4, a2 . w). The two constraints can be solved by the above derivation and assigning w to x6.

The second novelty of our heuristic method is that we view a set of relational atoms as trees, and
in certain cases, we can solve the constraints by only looking at the root and the leaves, ignoring the
structure of the trees. For the running example, G1 is a tree tr1 with root a0 and leaves {a2, a3, a4},
which are exactly the same as those in the tree tr2 of G2, although the internal structures of tr1 and
tr2 are different. We will show in Lemma 6.1 that, since every internal node in tr2 is a unique free
variable, and there are no ε labels in tr2, it is guaranteed that there exists a sequence of structural
rule applications on G1 to obtain a tree tr′1, which has the same structure as tr2, but only differing
in the labels of internal nodes. Hence we can assign the labels of internal nodes in tr′1 to the
corresponding free variables in tr2. The labels of nodes in tr′1 may be existing labels occurring in
tr1, or fresh labels created by A,AC applications. We will first try to match the free variables in
tr2 with existing labels in tr1, if this is not possible, we will assign the free variable to a fresh label.
In the example, x6 cannot be matched to any existing label, so we can globally replace x6 with a
fresh label w, and add G2 to the left hand side of the successor constraints of c1 in the partial order
�. The advantage of this process is that we do not care about the structural rule applications to
obtain tr′1 at all, but we know that the fresh label w as in the previous paragraph must exist and
can substitute x6.

30

We can extend this method to a chain of multiple relational atoms which form a labelled binary
tree. We define a labelled binary tree as a binary tree where each node is associated with a label.
Each node in a labelled binary tree has a left child and a right child. The minimum labelled
binary tree has a root and two leaves, which corresponds to a single relational atom. We define the
following function inductively from a labelled binary tree to a set of relational atoms.

Definition 6.1. Let tr be a labelled binary tree, the set Rel(tr) of relational atoms w.r.t. tr is
defined as follows.

• (Base case): tr only contains a root node labelled with r and two leaves labelled with a, b
respectively. Then Rel(tr) = {(a, b . r)}

• (Inductive case): tr contains a root node labelled with r, whose left and right children are
labelled with a and b respectively. Then Rel(tr) = Rel(tra)∪Rel(trb)∪{(a, b . r)}, where tra
and trb are the subtrees rooted at, respectively, the node labelled with a and b. .

The width of a labelled binary tree is defined as the number of leaves in the tree. A labelled
binary tree is a variant of another labelled binary tree if either they are exactly the same, or they
differ only in the labels of the internal nodes.

We say that a set R of relational atoms forms a labelled binary tree tr when R = Rel(tr). In this
case, the leaves in tr are actually a “splitting” of the root node. Commutativity and associativity
guarantee that we can split a node arbitrarily, as long as the leaves in the tree are the same.
Moreover, since all internal nodes are free variables, we can assign them to either existing labels
or fresh labels (created by A,AC) without clashing with existing relational atoms. This idea is
formalised in the following lemma, and is proved in Appendix A.13.

Lemma 6.1. Given constraints c1 l · · ·l cn with G = G(c1) = · · · = G(cn) where the r.h.s. of these
constraints gives the set R of relational atoms, c1, · · · , cn are solvable if the following hold:

1. R = Rel(tr), for some labelled binary tree tr where every internal node label is a free variable
x which only occurs once in tr, and c1 � c(x).

2. The other node labels in tr are non-ε labels.
3. There exist G′ ⊆ G and tr′ such that G′ = Rel(tr′) and tr′ has the same root and leaves as tr.

Our heuristic method is not complete, so it gives only sufficient conditions. Nevertheless, our
heuristic method seems effective in many cases, as will be demonstrated in the next section.

7 Implementation and experiments

We used a Dell Optiplex 790 desktop with Intel CORE i7 2600 @ 3.4 GHz CPU and 8GB memory
as the platform, and tested the following provers on the formulae from Park et al. [20]. (1) BBeye:
the OCaml prover from Park et al. based upon nested sequents [20]; (2) Naive (Vamp): translates
a BBI formula into a first-order formula using the standard translation, then uses Vampire 2.6 [11]
to solve it; (3) FVLSBBI Heuristic: backward proof search in FVLSBBI , using the heuristic-based
method to solve the set of constraints, implemented in OCaml.

The results are shown in Table 1. The BBeye (opt) column shows the results from Park et al’s
prover where the d() indicates the depth of proof search. The other two columns are for the two
methods stated above. We see that naive translation is comparable with BBeye in most cases, but

31

Formula BBeye Naive FVLSBBI

(opt) (Vamp) Heuristic
(P−∗ Q) ∧ (> ∗ (>∗ ∧ P))→ Q d(2) 0 0.003 0.001
(>∗−∗ ¬(¬P ∗ >∗))→ P d(2) 0 0.003 0.000
¬((P−∗ ¬(P ∗Q)) ∧ ((¬P−∗ ¬Q) ∧Q)) d(2) 0 0.004 0.001
>∗ → ((P−∗ (Q−∗ R))−∗ ((P ∗Q)−∗ R)) d(2) 0.015 0.017 0.001
>∗ → ((P ∗ (Q ∗R))−∗ ((P ∗Q) ∗R)) d(2) 0.036 0.006 0.000
>∗ → ((P ∗ ((Q−∗ V) ∗R))−∗ ((P ∗ (Q−∗ V)) ∗R)) d(2) 0.07 0.019 0.001
¬((P−∗ ¬(¬(U−∗ ¬(P ∗ (R ∗Q))) ∗ P)) ∧R ∗ (U ∧ (P ∗Q))) d(2) 0.036 0.037 0.001
¬((R ∗ (U ∗ V)) ∧B) where d(2) 0.016 0.075 0.039
B := ((P−∗ ¬(¬(Q−∗ ¬(U ∗ (V ∗R))) ∗ P)) ∗ (Q ∧ (P ∗ >)))
¬(C ∗ (U ∧ (P ∗ (Q ∗ V)))) where d(3) 96.639 0.089 0.038
C := ((P−∗ ¬(¬(U−∗ ¬((R ∗ V) ∗ (Q ∗ P))) ∗ P)) ∧R)
(P ∗ (Q ∗ (R ∗ U)))→ (U ∗ (R ∗ (Q ∗ P))) d(2) 0.009 0.048 0.001
(P ∗ (Q ∗ (R ∗ U)))→ (U ∗ (Q ∗ (R ∗ P))) d(3) 0.03 0.07 0.001
(P ∗ (Q ∗ (R ∗ (U ∗ V))))→ (V ∗ (U ∗ (P ∗ (Q ∗R)))) d(3) 1.625 1.912 0.001
(P ∗ (Q ∗ (R ∗ (U ∗ V))))→ (V ∗ (Q ∗ (P ∗ (R ∗ U)))) d(4) 20.829 0.333 0.001
>∗ → (P ∗ ((Q−∗ V) ∗ (R ∗ U))−∗ ((P ∗ U) ∗ (R ∗ (Q−∗ V)))) d(3) 6.258 0.152 0.007

Table 1: Initial experimental results.

the latter is not stable. When the tested formulae involves more interaction between multiplicative
connectives, BBeye runs significantly slower. The heuristic method outperforms all other methods
in the tested cases.

Nonetheless, our prover is slower than BBeye for formulae which contain many occurrences of
the same atomic formulae, giving (id) instances such as:

Γ;w1 : P ;w2 : P ; · · · ;wn : P ` x : P ; ∆

We have to choose some wi to match with x without knowing which choice satisfies other constraints.
In the worst case, we have to try each using backtracking. Multiple branches of this form lead to a
combinatorial explosion. Determinising the concrete labels (worlds) for formulae in proof search in
LSBBI or BBeye [20] avoids this problem. Further work is needed to solve this in FVLSBBI .

Even though we do not claim the completeness of our heuristics method, it appears to be a
fast way to solve certain problems. Completeness can be restored by fully implementing LSBBI

or FVLSBBI . The derivations in LSBBI are generally shorter than those in the Display Calculus
or Nested Sequent Calculus for BBI. The reader can verify that most of formulae in Table 1 can
even be proved by hand in a reasonable time using our labelled system. The optimisations of the
implementation, however, is out of the scope of this paper.

Our second experiment features randomly generated BBI theorems. We have further imple-
mented a prover based on LSBBI , which is sound and complete for BBI. This prover will be used
in the comparison with the prover for FVLSBBI and Park et al.’s BBeye.

A common way to generate random theorems is to simply globally replace a sub-formula in
a theorem by a longer random formula. We avoid this method on purpose, since we can easily
“cheat” by forcing our prover not to expand those sub-formulae until necessary. For example, we
can globally replace A by p ∧ q, and replace B by r ∨ t in the BBI theorem (A ∗ B) → (B ∗ A),
obtaining a longer theorem ((p∧ q) ∗ (r ∨ t))→ ((r ∨ t) ∗ (p∧ q)). But we can build in a mechanism
in our prover that given a formula F , we search for any sub-formula F ′ that occurs multiple times
in F , and replace F ′ by a “pseudo-proposition”, which is only allowed to be decomposed when the
prover cannot find a derivation. In this way, no matter how large the generated theorem is, the
prover takes the same time to prove it.

32

Test n i BBeye BBeye LSBBI LSBBI FVLSBBI FVLSBBI

proved avg. time proved avg. time proved avg. time
1 10 20 82% 0.93s 81% 0.25s 77% 0.01s
2 20 20 63% 1.43s 60% 0.73s 63% 0.01s
3 30 20 51% 4.33s 35% 0.76s 37% 0.01s
4 20 30 60% 2.24s 65% 0.77s 66% 0.01s
5 20 40 62% 2.51s 57% 1.35s 57% 0.01s
6 20 50 53% 1.20s 52% 1.15s 51% 0.01s
7 30 50 40% 2.94s 40% 1.18s 35% 0.01s

Table 2: Experiment 2 results.

We create random BBI theorems by first generating some random formulae (not necessarily
theorems) of length n, and perform global substitution of these formulae to certain places in a BBI
axiom schema; then we use the deduction rules −∗ 1 and −∗ 2 in Figure 3 to mutate the resultant
formula in random places, repeat this step by i iterations, yielding the final theorem.

When generating random theorems, our procedure randomly chooses axioms (and deduction
rules), but is biased to use the axioms in Figure 3 more often rather than the classical axioms.
Given the parameter n (resp. i) as in the previous paragraph, our procedure chooses a random
number ranging from 1 to n (resp. i) and proceeds as above. The mutation step is vital to generate
theorems with −∗ , since BBI axioms do not involve −∗ at all. Moreover, the “cheat” mechanism
would more often fail when we use the deduction rules to mutate the formula, because the internal
structure of the formula is changed. Our random theorem generation does not create theorems of
a fixed length, but the length grows as n increases.

We compare the performance of our provers with Park et al.’s BBI prover BBeye against our
randomly generated theorem suites in Table 2. The column with LSBBI is our complete prover
based on the original LSBBI ; the column with FVLSBBI is our incomplete prover based on the free-
variable system using the heuristic constraint solving method; and BBeye is Park et al.’s prover. As
said previously, the parameter n is the maximum length of random formulae to be substituted into
a BBI axiom, i is the maximum iteration of mutation. Each test suite contains 100 BBI theorems,
the “proved” column for each prover gives the percentage of successfully proved formulae within
the time out, and the “avg. time” column is the average time used when a formula is proved. We
set the time out as 50 seconds, if the prover cannot prove a formula within 50 seconds, the time is
not counted in the average time. The size of the tested formulae only depends on n. When n = 10,
an average formula has about 20 logical connectives, this number is increased to around 50 when
n = 30. The parameter i decides how different the formulae are from the original BBI axioms.

Table 2 shows that, BBeye has a slightly higher successful rate in general when timeout is set
to 50 seconds. However, BBeye spends more time than others on successful attempts. FVLSBBI is
the fastest prover in comparison, with an average of 0.01 second on successful attempts no matter
what the parameters are. Comparing test suites 1,2,3, we see that the successful rate of LSBBI and
FVLSBBI drop faster than BBeye when the size of the formula increases. Test suite 4 is an outlier
in which LSBBI and FVLSBBI proved more formulae than BBeye within the timeout. Comparing
test suites 2,5,6, we see the advantage of BBeye diminishes when the iteration of mutation increases.
The same phenomenon happens when comparing test suites 3 and 7. So when dealing with more
“complex” formulae, BBeye has similar successful rates as our prover based on LSBBI .

33

(a, b . c); Γ[c/d] ` ∆[c/d]
P

(a, b . c); (a, b . d); Γ ` ∆

(a, b . c); Γ ` ∆
T

Γ ` ∆

(ε, ε . ε); Γ[ε/a][ε/b] ` ∆[ε/a][ε/b]
IU

(a, b . ε); Γ ` ∆

(a, b . c); Γ[b/d] ` ∆[b/d]
C

(a, b . c); (a, d . c); Γ ` ∆

In T , a, b do occur in the conclusion but c does not
In all substitutions [y/x], x 6= ε

Figure 10: Some auxiliary structural rules.

8 Conclusion and Future Work

Our main contribution is a labelled sequent calculus for BBIND that is sound, complete, and enjoys
cut-elimination. There are no explicit contraction rules in LSBBI and all structural rules can be
restricted so that proof search is entirely driven by logical rules. We further propose a free variable
system to restrict the proof search space so that some applications of ∗R,−∗ L rules can be guided
by zero-premise rules. Although we can structure proof search to be more manageable compared
to the unrestricted (labelled or display) calculus, the undecidability of BBI implies that there is no
terminating proof search strategy for a sound and complete system. The essence of proof search
resides in guessing which relational atoms to use in the ∗R and −∗ L rules and whether they need
to be applied more than once to a formula. Nevertheless, our initial experimental results raise the
hope that a more efficient proof search strategy can be developed based on our calculus.

An immediate task is to find a complete and terminating (if possible) constraint solving strat-
egy. We also plan to investigate counter-model construction for BBIND. Such a countermodel
construction has been studied for BBIPD in [13, 12].

Another interesting topic is to extend our calculus to handle some semantics other than the
non-deterministic monoidal ones. Our design of the structural rules in LSBBI can be generalised
as follows. If there is a semantic condition of the form (w11, w12 . w13) ∧ · · · ∧ (wi1, wi2 . wi3) ⇒
(w′11, w

′
12 . w

′
13) ∧ · · · ∧ (w′j1, w

′
j2 . w

′
j3) ∧ (x11 = x12) ∧ · · · ∧ (xk1 = xk2), we create a rule:

(w′11, w
′
12 . w

′
13); · · · ; (w′j1, w

′
j2 . w

′
j3); (w11, w12 . w13); · · · ; (wi1, wi2 . wi3); Γ ` ∆

r

(w11, w12 . w13); · · · ; (wi1, wi2 . wi3); Γ ` ∆

And apply substitutions [x12/x11] · · · [xk2/xk1] globally on the premise, where ε is not substituted.
Many additional features can be added in this way. We summarise the following desirable ones:
(1) PD-semantics: the composition of two elements is either the empty set or a singleton, i.e.,
(a, b . c) ∧ (a, b . d) ⇒ (c = d); (2) TD-semantics: the composition of any two elements is always
defined as a singleton, i.e., ∀a, b,∃c s.t. (a, b . c); (3) indivisible unit: (cf. Section 1) (a, b . ε) ⇒
(a = ε) ∧ (b = ε); and (4) cancellativity: if w ◦ w′ is defined and w ◦ w′ = w ◦ w′′, then w′ = w′′,
i.e., (a, b . c) ∧ (a, d . c) ⇒ (b = d). Note that (2) and (4) are in addition to (1). The above are
formalised in the rules P , T , IU , C respectively in Figure 10.

The formula (F ∗F)→ F , where F = ¬(>−∗ ¬>∗), differentiates BBIND and BBIPD [15] and
is provable using LSBBI + P . Using LSBBI + T , we can prove (¬>∗−∗ ⊥) → >∗, which is valid
in BBITD but not in BBIPD [15], and also (>∗ ∧ ((p ∗ q)−∗ ⊥)) → ((p−∗ ⊥) ∨ (q−∗ ⊥)), which
is valid in separation models iff the composition is total [5]. These additional rules do not break
cut-elimination.

Except for the TD-semantics for BBI, the above properties, along with others in separation

34

theory [9, 6], such as disjointness, cross-split, splittability, can all be captured by using our labelled
method [12]. Totality is not considered in that work, as it is less frequently used in applications,
and causes inefficiency in proof search.

The above treatment is not the first one to consider other semantics for BBI. Larchey-Wendling
and Galmiche’s labelled tableau calculus [16] can be converted into a labelled sequent calculus that
has the same set of logical rules as that of LSBBI , the difference lies in the rules for capturing the
semantics. Our structural rules directly encode the properties of the non-deterministic monoidal
semantics of BBI (i.e., identity, commutativity, and associativity) by explicitly using ternary rela-
tional atoms. In comparison, Larchey-Wendling and Galmiche’s tableau calculus indirectly captures
the partial-deterministic semantics via a set of rules for Partial Monoidal Equivalences (PMEs).
Their rules do not employ ternary relations, but treat a combination of worlds as a string, building
in the partial-determinism reading. This could be part of the reason why their tableau calculus
can be further specialised to capture other properties in separation theory, but it is hard to be
generalised to capture the non-deterministic semantics. The tableau method also differs from ours
in that its completeness is proved via a counter-model construction, whereas our completeness is
proved by simulating the Hilbert system for BBI. In fact, there does not exist a Hilbert system for
BBIPD [6], thus their counter-model construction is necessary.

Oddly, the formula ¬(>∗ ∧A∧ (B ∗¬(C−∗ (>∗ → A)))), which is valid in BBIND, is very hard
to prove in the display calculus and Park et al.’s method. We ran this formula using Park et al.’s
prover for a week on a CORE i7 2600 processor, without success. Very short proofs of this formula
exist in LSBBI or Larchey-Wendling and Galmiche’s labelled tableau (this formula must also be
valid in BBIPD). We are currently investigating this phenomenon. The proofs for the formulae in
this section can be found in Appendix A.14.

References

[1] Bernhard Beckert and Rajeev Goré. Free-variable tableaux for propositional modal logics.
Studia Logica, 69(1):59–96, 2001.

[2] James Brotherston. A unified display proof theory for bunched logic. ENTCS, 265:197–211,
September 2010.

[3] James Brotherston and Cristiano Calcagno. Classical BI: Its semantics and proof theory.
LMCS, 6(3), 2010.

[4] James Brotherston and Max Kanovich. Undecidability of propositional separation logic and
its neighbours. In LICS, pages 130–139, 2010.

[5] James Brotherston and Max I. Kanovich. Undecidability of propositional separation logic and
its neighbours. J. ACM, 61(2):14, 2014.

[6] James Brotherston and Jules Villard. Parametric completeness for separation theories. In
POPL, pages 453–464. ACM, 2014.

[7] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract sepa-
ration logic. In LICS, pages 366–378. IEEE, 2007.

[8] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. Deciding security properties
for cryptographic protocols: application to key cycles. ACM Trans. Comput. Log., 11(2), 2010.

35

[9] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras
and share accounting. In APLAS, volume 5904 of LNCS, pages 161–177, 2009.

[10] Didier Galmiche and Dominique Larchey-Wendling. Expressivity properties of Boolean BI
through relational models. In FSTTCS, pages 358–369, 2006.

[11] Krystof Hoder and Andrei Voronkov. Comparing unification algorithms in first-order theorem
proving. KI’09, pages 435–443. Springer-Verlag, 2009.

[12] Zhe Hou, Ranald Clouston, Rajeev Goré, and Alwen Tiu. Proof search for propositional
abstract separation logics via labelled sequents. In POPL, pages 465–476. ACM, 2014.

[13] Dominique Larchey-Wendling. The formal strong completeness of partial monoidal Boolean
BI. Journal of Logic and Computation, 2014.

[14] Dominique Larchey-Wendling and Didier Galmiche. Exploring the relation between intuition-
istic BI and Boolean BI: An unexpected embedding. MSCS, 19(3):435–500, 2009.

[15] Dominique Larchey-Wendling and Didier Galmiche. The undecidability of Boolean BI through
phase semantics. LICS, 0:140–149, 2010.

[16] Dominique Larchey-Wendling and Didier Galmiche. Non-deterministic phase semantics and
the undecidability of Boolean BI. ACM TOCL, 14(1), 2013.

[17] Sara Negri. Proof analysis in modal logic. JPL, 34(5-6):507–544, 2005.

[18] Sara Negri and Jan von Plato. Structural Proof Theory. CUP, 2001.

[19] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. BSL, 5(2):215–244,
1999.

[20] Jonghyun Park, Jeongbong Seo, and Sungwoo Park. A theorem prover for Boolean BI. POPL
’13, pages 219–232, New York, NY, USA, 2013. ACM.

[21] David J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications. Applied
Logic Series. Kluwer Academic Publishers, 2002.

[22] John C. Reynolds. Separation logic: A logic for shared mutable data structures. LICS ’02,
pages 55–74. IEEE Computer Society, 2002.

[23] Alwen Tiu, Rajeev Goré, and Jeremy E. Dawson. A proof theoretic analysis of intruder theories.
Logical Methods in Computer Science, 6(3), 2010.

[24] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. CUP, 1996.

36

A Appendix

This section provides the details of the proofs in this paper.

A.1 Soundness of LSBBI

Proof for Theorem 2.1.

Proof. To prove the soundness of LSBBI , we show that each rule preserves falsifiability upwards,
as this is a more natural direction in terms of backward proof search. Therefore to prove that a
rule is sound, we need to show that if the conclusion is falsifiable, then at least one of the premises
is falsifiable (usually in the same choice of v, ρ, andM). Most of the cases are easy, we show some
samples here.

id Since there is no premise in this rule, we simply need to show that the conclusion is not falsifiable.

Suppose the sequent Γ;w : P ` w : P ; ∆ is falsifiable, then Γ must be true and ρ(w)
 A and
ρ(w) 6
 A and ∆ must be false. However, ρ(w)
 A and ρ(w) 6
 A cannot hold at the same
time for any (M, ., ε), v and ρ, so we have a contradiction, thus this sequent is not falsifiable.

>∗L Assume Γ;w : >∗ ` ∆ is falsifiable, then Γ is true and ρ(w)
 >∗ and ∆ is false.

From the semantics of >∗ we know that ρ(w)
 >∗ iff ρ(w) = ε. Therefore by choosing
the same ρ, v, and M for the premise, replacing every w by ε in Γ and ∆ preserves their
valuations, as we know that ρ(ε) = ε. That is, Γ[ε/w] must be true and ∆[ε/w] must be false.
So the premise is falsifiable.

∗L Assume the conclusion is falsifiable, so under some v, ρ, M, we have that Γ is true and ρ(z)

A ∗B and ∆ is false.

From the semantics of A ∗ B, we know that ∃a, b s.t. a, b . ρ(z) and a
 A and b
 B. So
we can choose a mapping ρ′ with ρ′ = (x 7→ a) ∪ (y 7→ b) ∪ ρ. Since x and y are fresh, they
should not affect anything in ρ. Then, under ρ′, the following hold: (x, y . z) is true and Γ is
true and ρ′(x)
 A and ρ′(y)
 B and ∆ is false. Thus the premise is falsifiable in v, ρ′, and
M.

∗R Assume under some v, ρ, and M, (x, y . z) is true and Γ is true and ρ(z) 6
 A ∗ B and ∆ is
false.

The semantics of A ∗B yields the following:

ρ(z) 6
 A ∗B ⇔ ¬(∃a, b. (a, b . ρ(z) and a
 A and b
 B))

⇔ ∀a, b. (a, b . ρ(z) doesn′t hold or a 6
 A or b 6
 B)

If we pick the same set of v, ρ, M for the premises, however, in both premises the relational
atom (x, y . z) already exists, which means ρ(x), ρ(y) . ρ(z) holds. So the possibility is only
that either ρ(x) 6
 A or ρ(y) 6
 B. Assume the former one holds, then the left premise is
falsifiable, otherwise the right premise is falsifiable.

Rules for additive connectives are straightforward, the cases for −∗ can be proved similarly as
for ∗ above. Structural rules E, A (and AC), Eq1 (and Eq2 and U) can be proved by using the
commutativity, associativity, and identity properties of the monoid structure respectively.

37

A.2 Substitution for labels

The proof for Lemma 3.1.

Proof. By induction on ht(Π).
(Base case) If ht(Π) = 0, then the only applicable rules are id, ⊥L, >R and >∗R. If the label x 6= ε
being substituted is not on the principal formula, then the substitution does not affect the original
derivation. Note that since we do not allow to substitute for the label ε, the proof for >∗R can only
be this case. Otherwise we obtain the new derivation by simply replacing the label of the principal
formula.
(Inductive case) If ht(Π) > 0, then consider the last rule applied in the derivation. We consider
three main cases.

1. Neither x nor y is the label of the principal formula.

(a) Suppose the last rule applied is >∗L, and x 6= w and y 6= w, and Π is the following
derivation:

Π1

Γ′[ε/w] ` ∆[ε/w]
>∗L

Γ′;w : >∗ ` ∆

By the induction hypothesis, there is a derivation Π′1 of Γ′[ε/w][y/x] ` ∆[ε/w][y/x]
with ht(Π′1) ≤ ht(Π1). Since x and y are different from w, this sequent is equal to
Γ′[y/x][ε/w] ` ∆[y/x][ε/w]. Therefore Π′ is constructed as follows.

Π′1

Γ′[y/x][ε/w] ` ∆[y/x][ε/w]
>∗L

Γ′[y/x];w : >∗ ` ∆[y/x]

Obviously ht(Π′) ≤ ht(Π).

(b) If the last rule applied is Eq1, we distinguish the following cases: x is not w or w′; x = w;
x = w′.

i. x 6= w and x 6= w′. The original derivation is as follows.
Π1

(ε, w . w); Γ′[w/w′] ` ∆[w/w′]
Eq1

(ε, w′ . w); Γ′ ` ∆

A. If y 6= w and y 6= w′, by the induction hypothesis, there is a derivation Π′1
of (ε, w . w); Γ′[w/w′][y/x] ` ∆[w/w′][y/x] with ht(Π′1) ≤ ht(Π1). Since x, y,
w, w′ are different labels, this sequent is equal to (ε, w . w); Γ′[y/x][w/w′] `
∆[y/x][w/w′]. Thus the derivation Π′ is constructed as follows.

Π′1

(ε, w . w); Γ′[y/x][w/w′] ` ∆[y/x][w/w′]
Eq1

(ε, w′ . w); Γ′[y/x] ` ∆[y/x]

B. If y = w, this case is similar to Case 1.(b).i.A.

C. Suppose y = w′. Then we need to derive (ε, y . w); Γ′[y/x] ` ∆[y/x]. If y 6= ε,
we construct Π′ by first applying Eq1 bottom-up:

38

(ε, w . w); Γ′[y/x][w/y] ` ∆[y/x][w/y]
Eq1

(ε, y . w); Γ′[y/x] ` ∆[y/x]

Now the premise is equal to (ε, w . w); Γ′[w/y][w/x] ` ∆[w/y][w/x], and by the
induction hypothesis, there is a derivation Π′1 of this sequent, with ht(Π′1) ≤
ht(Π1).
If y = ε, then we need to apply Eq2, instead of Eq1:

(ε, ε . ε); Γ′[ε/x][ε/w] ` ∆[ε/x][ε/w]
Eq2

(ε, ε . w); Γ′[ε/x] ` ∆[ε/x]

Note that the sequent (ε, ε . ε); Γ′[ε/x][ε/w] ` ∆[ε/x][ε/w] is the same as

(ε, ε . ε); Γ′[w/w′][ε/w][ε/x] ` ∆[w/w′][ε/w][ε/x].

So the premise can be proved by two successive applications of the induction
hypothesis to Π1, one using substitution [ε/w] and the other using substitution
[ε/x]. Here we can apply the induction hypothesis twice to Π1 because substitu-
tion does not increase the height of derivations.

ii. x = w (so w cannot be ε).

A. If y 6= w′, then Π has the form:
Π1

(ε, x . x); Γ′[x/w′] ` ∆[x/w′]
Eq1

(ε, w′ . x); Γ′ ` ∆
By the induction hypothesis we have the folowing derivation:

Π′1

(ε, y . y); Γ′[x/w′][y/x] ` ∆[x/w′][y/x]
The end sequent is equal to the following:

(ε, y . y); Γ′[y/x][y/w′] ` ∆[y/x][y/w′].

Then by using Eq1, we construct Π′ as follows.
Π′1

(ε, y . y); Γ′[y/x][y/w′] ` ∆[y/x][y/w′]
Eq1

(ε, w′ . y); Γ′[y/x] ` ∆[y/x]

B. If y = w′, then Π has the form:
Π1

(ε, x . x); Γ′[x/y] ` ∆[x/y]
Eq1

(ε, y . x); Γ′ ` ∆
By the induction hypothesis, we have the following derivation:

Π′1

(ε, y . y); Γ′[x/y][y/x] ` ∆[x/y][y/x]
Since in the end sequent, we replace every y by x, and then change every x back
to y, the effect is the same as just keeping every y unchanged and only replace
every x by y. Thus the end sequent is equal to:

(ε, y . y); Γ′[y/x] ` ∆[y/x]

which is exactly what we need to derive. Therefore we let Π′ = Π′1. Notice that
in this case ht(Π′) < ht(Π).

39

iii. x = w′.

A. If y 6= w and y 6= ε, the original derivation is as follows.
Π1

(ε, w . w); Γ′[w/x] ` ∆[w/x]
Eq1

(ε, x . w); Γ′ ` ∆

By the induction hypothesis (instead of replacing every x by y, we now replace
every y by w), we have the following derivation:

Π′1

(ε, w . w); Γ′[w/x][w/y] ` ∆[w/x][w/y]
The end sequent is equal to:

(ε, w . w); Γ′[y/x][w/y] ` ∆[y/x][w/y]

Thus Π′ is constructed as follows.
Π′1

(ε, w . w); Γ′[y/x][w/y] ` ∆[y/x][w/y]
Eq1

(ε, y . w); Γ′[y/x] ` ∆[y/x]
B. If y = ε and w 6= ε, we need to derive the following sequent:

(ε, ε . w); Γ′[ε/x] ` ∆[ε/x]

By induction hypothesis, replacing every w by ε in Π1, then using the rule Eq2,
we get the new derivation:

Π′1

(ε, ε . ε); Γ′[ε/x][ε/w] ` ∆[ε/x][ε/w]
Eq2

(ε, ε . w); Γ′[ε/x] ` ∆[ε/x]
C. If y = w, then the premise of the last rule is exactly what we need to derive.

(c) If the last rule applied is Eq2, we consider three cases: x 6= w and y 6= w; x = w; and
y = w. These are symmetric to the case where the last rule is Eq1, already discussed
above.

2. y is the label of the principal formula. Most of the cases follow similarly as above, except for
>∗L. In this case the original derivation is as follows.

Π1

Γ′[ε/y] ` ∆[ε/y]
>∗L

Γ′; y : >∗ ` ∆

Our goal is to derive Γ′[y/x]; y : >∗ ` ∆[y/x]. Applying >∗L as in backward proof search, we
get

Γ′[y/x][ε/y] ` ∆[y/x][ε/y]

Note that this sequent is equal to Γ′[ε/y][ε/x] ` ∆[ε/y][ε/x], and from induction hypothesis
we know that there is a derivation of this sequent of height less than or equal to ht(Π).

3. x is the label of the principal formula.

40

(a) For the additive rules, since the labels stay the same in the premises and conclusions of
the rules, even if the label of the principal formula is replaced by some other label, we
can still apply the induction hypothesis on the premise, then use the rule to derive the
conclusion.

For ∧L,

Π1

Γ′;x : A;x : B ` ∆
∧L

Γ′;x : A ∧B ` ∆

Π′1

Γ′[y/x]; y : A; y : B ` ∆[y/x]
∧L

Γ′[y/x]; y : A ∧B ` ∆[y/x]

For ∧R,

Π1

Γ′ ` x : A; ∆

Π2

Γ′ ` x : B; ∆
∧R

Γ′ ` x : A ∧B; ∆

Π′1

Γ′[y/x] ` y : A; ∆[y/x]

Π′2

Γ′[y/x] ` y : B; ∆[y/x]
∧R

Γ′[y/x] ` y : A ∧B; ∆[y/x]

For → L,

Π1

Γ′ ` x : A; ∆

Π2

Γ′;x : B ` ∆
→ L

Γ′;x : A→ B ` ∆

Π′1

Γ′[y/x] ` y : A; ∆[y/x]

Π′2

Γ′[y/x]; y : B ` ∆[y/x]
→ L

Γ′[y/x]; y : A→ B ` ∆[y/x]

For → R,

Π1

Γ′;x : A ` x : B; ∆
→ R

Γ′ ` x : A→ B; ∆

Π′1

Γ′[y/x]; y : A ` y : B; ∆[y/x]
→ R

Γ′[y/x] ` y : A→ B; ∆[y/x]

(b) For multiplicative rules that do not produce eigenvariables (∗R,−∗ L,>∗L), we can pro-
ceed similarly as in the additive cases, except for the >∗L rule. For the >∗L rule, if the
label x of the principal formula is replaced by some (other) label y, i.e., Π is

Π1

Γ′[ε/x] ` ∆[ε/x]
>∗L

Γ′;x : >∗ ` ∆

then we then need a derivation of the sequent Γ′[y/x]; y : >∗ ` ∆[y/x]. Using >∗L rule
we have:

Γ[y/x][ε/y] ` ∆[y/x][ε/y]
>∗L

Γ[y/x]; y : >∗ ` ∆[y/x]

41

Note that the premise now is equal to Γ[ε/x][ε/y] ` ∆[ε/x][ε/y], and can be proved using
the induction hypothesis on Π1.

If y = ε, then Π′ is obtained by applying Lemma A.3.1 to Π1.

(c) For the multiplicative rules that have eigenvariables (∗L and −∗ R), if the label of the
principal formula is replaced by a label other than the newly created labels in the rules,
then we proceed similarly as in additive cases. If the label of the principal formula is
replaced by one of the newly created labels, then we just need to create a different new
label in the new relation.

For ∗L, we have the derivation:

Π1

(y, z . x); Γ′; y : A; z : B ` ∆
∗L

Γ′;x : A ∗B ` ∆

If x is substituted by y (the case for substituting to z is symmetric), then we need a
derivation of Γ′[y/x]; y : A∗B ` ∆[y/x]. Note that since the ∗L rule requires the relation
(y, z .x) to be fresh, so in the original derivation y and z cannot be in Γ or ∆. Therefore
by induction hypothesis we must have a derivation Π′1 for

(y′, z′ . x); Γ′; y′ : A; z′ : B ` ∆,

where y′ and z′ are new labels, such that ht(Π′1) ≤ ht(Π1). Applying the induction
hypothesis again to Π′1, we have a derivation Π′′1 (y′, z′.y); Γ′[y/x]; y′ : A; z′ : B ` ∆[y/x],
with ht(Π′′1) ≤ ht(Π1). Thus the derivation Π′ is constructed as follows.

Π′′1

(y′, z′ . y); Γ′[y/x]; y′ : A; z′ : B ` ∆[y/x]
∗L

Γ′[y/x]; y : A ∗B ` ∆[y/x]

The case for −∗ R is similar. suppose Π is:

Π1

(y, x . z); Γ; y : A ` z : B; ∆′
−∗ R

Γ ` x : A−∗ B; ∆′

If x is replaced by y, then we have the following derivation.

Π′1

(y′, y . z′); Γ[y/x]; y′ : A ` z′ : B; ∆′[y/x]
−∗ R

Γ[y/x] ` y : A−∗ B; ∆′[y/x]

If x is replaced by z, then we have the following derivation.

Π′1

(y′, z . z′); Γ[z/x]; y′ : A ` z′ : B; ∆′[z/x]
−∗ R

Γ[z/x] ` z : A−∗ B; ∆′[z/x]

42

A.3 Weakening admissibility of LSBBI

Lemma A.3.1. For all structures Γ,∆, labelled formula w : A, and ternary relation (x, y . z),
if Γ ` ∆ is derivable, then there exists a derivation of the same height for each of the following
sequents:

Γ;w : A ` ∆ Γ ` w : A; ∆ (x, y . z); Γ ` ∆.

Proof. By induction on ht(Π). Since id, ⊥L, >R, and >∗R all have weakening built in, the base
case trivially holds. For the inductive cases, the only nontrivial case is for ∗L and −∗ R, where new
labels have to be introduced. These labels can be systematically renamed to make sure that they
do not clash with the labels in the weakened formula/relational atom.

This yields the proof for Lemma 3.2 in the paper. Furthermore, we can prove more useful
lemmas based on the weakening property.

We next prove a ‘strengthening’ property, which is the converse of weakening property of deriva-
tion and which will be useful in proving cut-elimination. That is, if a formula is never principal in
a derivation, it can obviously be omitted.

Lemma A.3.2. If w : A is not the principal formula of any rule application in the derivation of
Γ;w : A ` ∆ (Γ ` w : A; ∆ resp.), then there is a derivation of Γ ` ∆ with the same series of rule
applications.

A consequence of this lemma is that certain formula occurrences to which no introduction
rules can be applied (thus they can never be principal in any derivation) can be removed from a
derivation without affecting the validity of the derivation. Examples of this are formulas ε : >∗ or
x : > occuring on the left hand side of a sequent.

Lemma A.3.3. If Γ; ε : >∗ ` ∆ is derivable, then Γ ` ∆ is derivable with the same series of rule
applications.

Lemma A.3.4. If Γ;w : > ` ∆ is derivable, then Γ ` ∆ is derivable with the same series of rule
applications.

A.4 Invertibility of rules in LSBBI

Proof for Lemma 3.3.

Proof. As the additive rules in LSBBI are exactly the same as those in Negri’s labelled system for
Modal logic or G3c (cf. [18]), the proof for them is similar. The main difference is that the rest of
our rules are of different forms. However, as most of our rules do not modify the side structures,
simply by applying the induction hypothesis and then using the corresponding rule, we get the new
derivation. The cases where the last rule applied is >∗L, Eq1, or Eq2 follow essentially the same,
except a global substitution needs to be considered, but that is of no harm.

Rules E, A, U , AC , ∗R and −∗ L are trivially invertible as the conclusion is a subset of the
premise, and weakening is height-preserving admissible.

To prove the cases for ∗L and −∗ R, we do inductions on the height n of the derivation. In each
case below, it is obvious that each premise is always cut-free derivable with less or same height as
the conclusion.

The case for ∗L is as follows.

43

(Base case) If n = 0, then the conclusion of ∗L is one of the conlucsions of id, ⊥L, >R, >∗R,
notice that the identity rule is restricted to propositions, therefore the premise of ∗L is also the
conclusions of the corresponding axiom rule.
(Inductive case) If n > 0, and the last rule applied is not ∗L or −∗ R, then no fresh labels are
involved, so we can safely apply the induction hypothesis on the premise of the last rule and then
use the rule to get the derivation. If the last rule is ∗L or −∗ R, but the principal formula is in
Γ or ∆, we proceed similarly, and use the Substitution Lemma to ensure that the eigenvariables
are new. If the principal formula is z : A ∗ B, then the premise of the last rule yields the desired
conclusion.

The case for −∗ R follows similarly.
For >∗L, again, we do an induction on the height n of the derivation.

(Base case) If n = 0, then Γ;x : >∗ ` ∆ is the conclusion of one of id, ⊥L, >R, >∗R, and x : >∗
cannot be the principal formula. Note that in the first three cases the principal formulae can be
labelled with anything. Since, in the sequent Γ[ε/x] ` ∆[ε/x], the label x is uniformly replaced by
ε, this sequent can be the conclusion of the corresponding rule as well. For >∗R, since >∗ on the
right hand side can only be labelled with ε, so replacing x to ε does not change its label. Thus this
case is not broken either.
(Inductive case) If n > 0, consider the last rule applied in the derivation.

1. If the principal formula or relation does not involve the label x, then we can apply the
induction hypothesis directly on the premise of the last rule, then use the last rule to get the
derivation.

2. Otherwise, if the principal formula or relation has label x, and the last rule is not >∗L, we
proceed similarly, except replacing the label in the principal relation or formula. The detail
is exemplified using ∗L.

For ∗L, we have the following derivation:

Π

(y, z . x); Γ;x : >∗; y : A; z : B ` ∆
∗L

Γ;x : >∗;x : A ∗B ` ∆

The condition of the rule ∗L guarantees that y and z cannot be in Γ and ∆, so we do not
have to worry if they are identical to x. By applying the induction hypothesis and then using
the rule, we get the following derivation:

Π′

(y, z . ε); Γ[ε/x]; y : A; z : B ` ∆[ε/x]
∗L

Γ[ε/x]; ε : A ∗B ` ∆[ε/x]

Another way to do this is by using the Substitution Lemma, replacing x by ε, we get a
derivation to the premise that has a redundant ε : >∗, since we know that this labelled
formula on the left hand side does not contribute to the derivation, we can safely derive the
sequent without it using the same inference, cf. Lemma A.3.2.

The case where the last rule is −∗ R is similar.

If the last rule is Eq1, we consider the following cases:

44

(a) The label of >∗ is not in the principal relation (i.e., x 6= w and x 6= w′). The original
derivation is as follows.

Π

(ε, w . w); Γ[w/w′];x : >∗ ` ∆[w/w′]
Eq1

(ε, w′ . w); Γ;x : >∗ ` ∆

By the induction hypothesis, we have the following derivation:

Π′

(ε, w . w); Γ[w/w′][ε/x] ` ∆[w/w′][ε/x]

Note that since x, w, w′ are all different, the end sequent is equal to the following:

(ε, w . w); Γ[ε/x][w/w′] ` ∆[ε/x][w/w′]

from which we can use the rule Eq1 and derive (ε, w′ . w); Γ[ε/x] ` ∆[ε/x].

(b) x = w. The original derivation is as follows.

Π

(ε, x . x); Γ[x/w′];x : >∗ ` ∆[x/w′]
Eq1

(ε, w′ . x); Γ;x : >∗ ` ∆

By the substitution lemma, replacing every x by ε in the premise of the last rule, we get
the following derivation:

Π′

(ε, ε . ε); Γ[x/w′][ε/x]; ε : >∗ ` ∆[x/w′][ε/x]

The end sequent is equal to:

(ε, ε . ε); Γ[ε/x][ε/w′]; ε : >∗ ` ∆[ε/x][ε/w′]

By Lemma A.3.3, ε : >∗ in the antecedent can be omitted. Apply the Eq1 rule on this
sequent without ε : >∗, we finally get (ε, w′ . ε); Γ[ε/x] ` ∆[ε/x].

(c) x = w′. The original derivation is as follows.

Π

(ε, w . w); Γ[w/x];w : >∗ ` ∆[w/x]
Eq1

(ε, x . w); Γ;x : >∗ ` ∆

By the induction hypothesis, we have the following derivation:

Π′

(ε, ε . ε); Γ[w/x][ε/w] ` ∆[w/x][ε/w]

Now the end sequent is equal to:

(ε, ε . ε); Γ[ε/x][ε/w] ` ∆[ε/x][ε/w]

By using the rule Eq2 on this sequent, we derive (ε, ε . w); Γ[ε/x] ` ∆[ε/x].

The case where the last rule is Eq2 is similar to the case for Eq1.

If the last rule is >∗L, then the derivation to the premise of the last rule yields the new
derivation.

The invertibility of Eq1 and Eq2 follows from the Substitution Lemma, as the reverse versions
of these two rules are only about replacing labels.

45

A.5 Contraction admissibility of LSBBI

Lemma A.5.1. For all structures Γ,∆, and labelled formula w : A, the following holds in LSBBI :

1. If there is a cut-free derivation Π of Γ;w : A;w : A ` ∆, then there is a cut-free derivation
Π′ of Γ;w : A ` ∆ with ht(Π′) ≤ ht(Π).

2. If there is a cut-free derivation Π of Γ ` w : A;w : A; ∆, then there is a cut-free derivation
Π′ of Γ ` w : A; ∆ with ht(Π′) ≤ ht(Π).

Proof. By simultaneous induction on the height of derivations for the left and right contraction.
Let n = ht(Π).
(Base case) If n = 0, the premise is one of the conclusions of id, ⊥L, >R and >∗R, then the
contracted sequent is also the conclusion of the corresponding rules.
(Inductive case) If n > 0, consider the last rule applied to the premise of the contraction.

(i) If the contracted formula is not principal in the last rule, then we can apply the induction
hypothesis on the premise(s) of the last rule, then use the rule to get the derivation.

(ii) If the contracted formula is the principal formula of the last rule, we have several cases. For
the additive rules the cases are reduced to contraction on smaller formulae, cf. [18].

For >∗L, we have the following derivation:

Π

Γ[ε/x]; ε : >∗ ` ∆[ε/x]
>∗L

Γ;x : >∗;x : >∗ ` ∆

Note that the only case where >∗ is useful on the left hand side is when it is labelled with a
world other than ε. Since the substitution [ε/ε] does not do anything to the sequent, Π can also be
the derivation for Γ[ε/x] ` ∆[ε/x], cf. Lemma A.3.3, which leads to Γ;x : >∗ ` ∆.

For ∗R and −∗ L, we can apply the induction hypothesis directly on the premise of the corre-
sponding rule since the rules carry the principal formula into the premise(s).

For ∗L, we have a derivation as follows.

Π

(x, y . z); Γ; z : A ∗B;x : A; y : B ` ∆
∗L

Γ; z : A ∗B; z : A ∗B ` ∆

Apply the Invertibility Lemma on the premise of ∗L, we have:

Π′

(x, y . z); (x′, y′ . z); Γ;x′ : A; y′ : B;x : A; y : B ` ∆

The Substitution Lemma yields a derivation for (x, y.z); (x, y.z); Γ;x : A; y : B;x : A; y : B ` ∆.
Apply the induction hypothesis twice and admissibility of contraction on relational atoms on this
sequent, to get a derivation for (x, y . z); Γ;x : A; y : B ` ∆. Apply ∗L on this sequent to get
Γ; z : A ∗B ` ∆.

The case for −∗ R follows similarly. We have a derivation as follows.

Π

(x, y . z); Γ;x : A ` z : B; y : A−∗ B; ∆
−∗ R

Γ ` y : A−∗ B; y : A−∗ B; ∆

The Invertibility of −∗ R in the premise yields:

46

Π

(x, y . z); (x′, y . z′); Γ;x : A;x′ : A ` z : B; z′ : B; ∆

We obtain (x, y .z); (x, y .z); Γ;x : A;x : A ` z : B; z : B; ∆ by the Substitution Lemma. Apply
induction hypothesis twice, and the admissibility of contraction on relations on this sequent, to get
(x, y . z); Γ;x : A ` z : B∆. Finally, apply −∗ R, to derive Γ ` y : A−∗ B; ∆ in the nth step.

A.6 Cut elimination

The proof for Theorem 3.6.

Proof. By induction on the cut ranks of the proof in LSBBI . We show that each application of
cut can either be eliminated, or be replaced by one or more cut rules of smaller cut ranks. The
argument for termination is similar to the cut-elimination proof for G3ip [18]. We start to eliminate
the topmost cut first, and repeat this procedure until there is no cut in the derivation. We first
show that cut can be eliminated when the cut height is the lowest, i.e., at least one premise is of
height 1. Then we show that the cut height is reduced in all cases in which the cut formula is not
principal in both premises of cut. If the cut formula is principal in both premises, then the cut
is reduced to one or more cuts on smaller formulae or shorter derivations. Since atoms cannot be
principal in logical rules, finally we can either reduce all cuts to the case where the cut formula is
not principal in both premises, or reduce those cuts on compound formulae until their cut heights
are minimal and then eliminate those cuts.
(Base case) If at least one premise of the cut rule is id, ⊥L, >R, or >∗R, we consider the following
cases:

1. The left premise of cut is an application of id, and the cut formula is not principal, then the
derivation is transformed as follows.

id
Γ; y : B ` y : B;x : A; ∆

Π

Γ′;x : A ` ∆′
cut

Γ; Γ′; y : B ` y : B; ∆; ∆′

id
Γ; Γ′; y : B ` y : B; ∆; ∆′

The same transformation works for ⊥L, >R, >∗R in this case.

2. The left premise of cut is an application of id, and the cut formula is principal, then the
derivation is transformed as follows.

id
Γ;x : A ` x : A; ∆

Π

Γ′;x : A ` ∆′
cut

Γ; Γ′;x : A ` ∆; ∆′

Π

Γ′;x : A ` ∆′
Lemma 3.2

Γ; Γ′;x : A ` ∆; ∆′

3. The left premise of cut is an application of >R, and the cut formula is principal, then the
derivation is transformed as follows.

47

>R
Γ ` x : >; ∆

Π

Γ′;x : > ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Π′

Γ′ ` ∆′
Lemma 3.2

Γ; Γ′ ` ∆; ∆′

As x : > cannot be a principal formula in the antecedent, by Lemma A.3.2 there is a derivation
Π′ of Γ′ ` ∆′.

The same holds for >∗R.

4. The right premise of cut is an application of id, ⊥L, >R or >∗R, and the cut formula is not
principal. This case is similar to case 1.

5. The right premise of cut is an application of id, and the cut formula is principal. This case is
similar to case 2.

6. The right premise of cut is an application of ⊥L, and the cut formula is principal. This case
is similar to case 3.

(Inductive case) If both premises are not in one of the base cases, we distinguish three cases here:
the cut formula is not principal in the left premises; the cut formula is only principal in the left
premise; and the cut formula is principal in both premises.

1. The cut formula is not principal in the left premise. Suppose the left premise ends with a rule
r.

(a) If r is >∗L, w.l.o.g. we assume the label of the principal formula is y (which might be
equal to x). The original derivation is as follows.

Π1

Γ[ε/y] ` x : A; ∆[ε/y]
>∗L

Γ; y : >∗ ` x : A; ∆

Π2

Γ′;x : A ` ∆′
cut

Γ; Γ′; y : >∗ ` ∆; ∆′

By the Substitution lemma, there is a derivation Π′2 of Γ′[ε/y];x : A ` ∆[ε/y]. Thus we
can transform the derivation into the following:

Π1

Γ[ε/y] ` x : A; ∆[ε/y]

Π′2

Γ′[ε/y];x : A ` ∆′[ε/y]
cut

Γ[ε/y]; Γ′[ε/y] ` ∆[ε/y]; ∆′[ε/y]
>∗L

Γ; Γ′; y : >∗ ` ∆; ∆′

If x = y in the original derivation, then the new derivation cuts on ε : A instead. As
substitution is height preserving, the cut height in this case is reduced as well.

(b) If r is Eq1, and the label x of the principal formula is not equal to w′, the original
derivation is as follows.

48

Π1

(ε, w . w); Γ[w/w′] ` x : A; ∆[w/w′]
Eq1

(ε, w′ . w); Γ ` x : A; ∆

Π2

Γ′;x : A ` ∆′
cut

(ε, w′ . w); Γ; Γ′ ` ∆; ∆′

This cut is reduced in the same way as the >∗L case, where we get Π′2 from the Substi-
tution Lemma:

Π1

(ε, w . w); Γ[w/w′] ` x : A; ∆[w/w′]

Π′2

Γ′[w/w′];x : A ` ∆′[w/w′]
cut

(ε, w . w); Γ[w/w′]; Γ′[w/w′] ` ∆[w/w′]; ∆′[w/w′]
Eq1

(ε, w′ . w); Γ; Γ′ ` ∆; ∆′

If x = w′, then we cut on w : A instead in the reduced version.

(c) If r is Eq2, the procedure follows similarly as the case for Eq1 above.

(d) If r is a unary inference except for >∗L, Eq1, and Eq2, then the original derivation is as
follows.

Π1

Γ1 ` x : A; ∆1 r
Γ ` x : A; ∆

Π2

Γ′;x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Then we can delay the application of cut as follows.

Π1

Γ1 ` x : A; ∆1

Π2

Γ′;x : A ` ∆′
cut

Γ1; Γ′ ` ∆1; ∆′
r

Γ; Γ′ ` ∆; ∆′

Note that as all our rules except >∗L, Eq1, and Eq2 do not modify side structures,
Γ′ and ∆′ in the premise of r are not changed. The cut rank of the original cut is
(|x : A|, |Π1|+ 1 + |Π2|), whereas the cut rank of the new cut is (|x : A|, |Π1|+ |Π2|), so
the cut height reduces.

(e) If r is a binary inference, we can transform the derivation similarly.

Π1

Γ1 ` x : A; ∆1

Π2

Γ2 ` x : A; ∆2 r
Γ ` x : A; ∆

Π3

Γ′;x : A ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Π1

Γ1 ` x : A; ∆1

Π3

Γ′;x : A ` ∆′
cut

Γ1; Γ′ ` ∆1; ∆′

Π2

Γ2 ` x : A; ∆2

Π3

Γ′;x : A ` ∆′
cut

Γ2; Γ′ ` ∆2; ∆′
r

Γ; Γ′ ` ∆; ∆′

The cut rank of the original cut is (|x : A|,max(|Π1|, |Π2|) + 1 + |Π3|), and that of the
new two cuts are (|x : A|, |Π1| + |Π3|) and (|x : A|, |Π2| + |Π3|) respectively. Thus the
cut heights are reduced.

49

2. The cut formula is only principal in the left premise. We only consider the last rule in the
right branch. The proof of this case is symmetric to those in Case 1.

3. The cut formula is principal in both premises. We do a case analysis on the main connective
of the cut formula. If the main connective is additive, then there is no need to substitute any
labels.

For ∧,

Π1

Γ ` x : A; ∆

Π2

Γ ` x : B; ∆
∧R

Γ ` x : A ∧B; ∆

Π3

Γ′;x : A;x : B ` ∆′
∧L

Γ′;x : A ∧B ` ∆′
cut

Γ; Γ′ ` ∆; ∆′

Π1

Γ ` x : A; ∆

Π2

Γ ` x : B; ∆

Π3

Γ′;x : A;x : B ` ∆′
cut

Γ; Γ′;x : A ` ∆; ∆′
cut

Γ; Γ; Γ′ ` ∆; ∆; ∆′
Lemma 3.5

Γ; Γ′ ` ∆; ∆′

For →,

Π1

Γ′;x : A ` x : B; ∆′
→ R

Γ′ ` x : A→ B; ∆′

Π2

Γ ` x : A; ∆

Π3

Γ;x : B ` ∆
→ L

Γ;x : A→ B ` ∆
cut

Γ; Γ′ ` ∆; ∆′

Π2

Γ ` x : A; ∆

Π1

Γ′;x : A ` x : B; ∆′
Π3

Γ;x : B ` ∆
cut

Γ; Γ′;x : A ` ∆; ∆′
cut

Γ; Γ; Γ′ ` ∆; ∆; ∆′
Lemma 3.5

Γ; Γ′ ` ∆; ∆′

For both ∧ and →, cut is reduced to applications on smaller formulae, therefore the cut rank
of the cut reduces.

There is an asymmetry in the rules for >∗. That is, the left rule for >∗ requires that the label
w of >∗ cannot be ε, whereas the right rule for >∗ restricts the label of >∗ to be ε only. As a
consequence, when the cut formula is >∗, it cannot be the principal formula of both premises
at the same time. Therefore the cases for >∗ are handled in the proof above.

When the main connective of the cut formula is ∗ or −∗ , the case is more complicated. For
∗, we have the following two derivations as the premises of the cut rule:

Π1

(x, y . z); Γ ` x : A; z : A ∗B; ∆

Π2

(x, y . z); Γ ` y : B; z : A ∗B; ∆
∗R

(x, y . z); Γ ` z : A ∗B; ∆

and

50

Π3

(x′, y′ . z); Γ′;x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗B ` ∆′

And the cut rule gives the end sequent (x, y . z); Γ; Γ′ ` ∆; ∆′. The cut rank of this cut is
(|A ∗B|,max(|Π1|, |Π2|) + 1 + |Π3|+ 1).

We use several cuts with smaller ranks to derive (x, y . z); Γ; Γ′ ` ∆; ∆′ as follows.

Firstly,

Π1

(x, y . z); Γ ` x : A; z : A ∗B; ∆

Π3

(x′, y′ . z); Γ′;x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗B ` ∆′
cut

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′

The cut rank of this cut is (|A ∗B|, |Π1|+ |Π3|+ 1)), thus is less than the original cut.

The second cut works similarly.

Π2

(x, y . z); Γ ` y : B; z : A ∗B; ∆

Π3

(x′, y′ . z); Γ′;x′ : A; y′ : B ` ∆′
∗L

Γ′; z : A ∗B ` ∆′
cut

(x, y . z); Γ; Γ′ ` y : B; ∆; ∆′

The third cut works on a smaller formula.

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′
Π′3

(x, y . z); Γ′;x : A; y : B ` ∆′
cut

(x, y . z); (x, y . z); Γ; Γ′; Γ′; y : B ` ∆; ∆′; ∆′

The cut formula is x : A, thus the cut rank of this cut is less regardless of the height of the
derivations.

Note that in the Π3 branch, the ∗L rule requires that the relation (x′, y′ . z) is newly created,
so x′ and y′ cannot be ε and they cannot be in Γ′ or ∆′. Therefore we are allowed to use the
substitution lemma to get a derivation Π′3 of (x, y.z); Γ′;x : A; y : B ` ∆′ by just substituting
x′ for x and y′ for y.

Finally we cut on another smaller formula y : B.

(x, y . z); Γ; Γ′ ` y : B; ∆; ∆′ (x, y . z); (x, y . z); Γ; Γ′; Γ′; y : B ` ∆; ∆′; ∆′
cut

(x, y . z); (x, y . z); (x, y . z); Γ; Γ; Γ′; Γ′; Γ′ ` ∆; ∆; ∆′; ∆′; ∆′

The cut rank of this cut is less than the original cut. We then apply the admissibility of
contraction to derive (x, y . z); Γ; Γ′ ` ∆; ∆′.

The case for −∗ is similar. The two premises in the original cut are as follows.

Π1

(x′, y . z′); Γ′;x′ : A ` z′ : B; ∆′
−∗ R

Γ′ ` y : A−∗ B; ∆′

51

and

Π2

(x, y . z); Γ; y : A−∗ B ` x : A; ∆

Π3

(x, y . z); Γ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z); Γ; y : A−∗ B ` ∆

And the cut rule yields the end sequent (x, y . z); Γ; Γ′ ` ∆; ∆′. We use two cuts on the same
formula, but with smaller derivation height.

Π1

(x′, y . z′); Γ′;x′ : A ` z′ : B; ∆′
−∗ R

Γ′ ` y : A−∗ B; ∆′
Π2

(x, y . z); Γ; y : A−∗ B ` x : A; ∆
cut

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′

Π1

(x′, y . z′); Γ′;x′ : A ` z′ : B; ∆′
−∗ R

Γ′ ` y : A−∗ B; ∆′
Π3

(x, y . z); Γ; y : A−∗ B; z : B ` ∆
cut

(x, y . z); Γ; Γ′; z : B ` ∆; ∆′

Then we cut on a smaller formula x : A.

(x, y . z); Γ; Γ′ ` x : A; ∆; ∆′
Π′1

(x, y . z); Γ′;x : A ` z : B; ∆′
cut

(x, y . z); (x, y . z); Γ; Γ′; Γ′ ` z : B; ∆; ∆′; ∆′

Again, in the original derivation, x′ and z′ are fresh in the premise of −∗ R rule, thus by the
Substitution Lemma we can have a derivation Π′1 of the sequent (x, y .z); Γ′;x : A ` z : B; ∆′,
with x′ substituted to x and z′ substituted to z.

Then we cut on z : B.

(x, y . z); (x, y . z); Γ; Γ′; Γ′ ` z : B; ∆; ∆′; ∆′ (x, y . z); Γ; Γ′; z : B ` ∆; ∆′
cut

(x, y . z); (x, y . z); (x, y . z); Γ; Γ; Γ′; Γ′; Γ′ ` ∆; ∆; ∆′; ∆′; ∆′

In the end we use the theorem of admissibility of contraction to obtain the required sequent
(x, y . z); Γ; Γ′ ` ∆; ∆′.

A.7 Permutation of structural rules in LSBBI

Proof for Lemma 4.1.

Proof. To prove this lemma, we need to show that if a derivation involves the structural rules, we
can always apply them exactly before ∗R and −∗ L, or before zero-premise rules. We show this
by an induction on the height of the derivation. Since we do not permute structural rules through
zero-premise rules, the proof in the base case and the inductive step are essentially the same. Here
we give some examples of the permutations. Assuming the lemma holds up to any derivation of
height n− 1, consider a derivation of height n.

52

1. Permute the application of Eq1 or Eq2 through non-zero-premise logical rules except for ∗R
and −∗ L. Here we give some examples, the rest are similar.

(a) Permute Eq2 through additive logical rules is trivial, this is exemplified by ∧L, assuming
the label of the principal formula is modified by the Eq2 application. The original
derivation is as follows.

Π

(ε, ε . ε); Γ[ε/w]; ε : A; ε : B ` ∆[ε/w]
∧L

(ε, ε . ε); Γ[ε/w]; ε : A ∧B ` ∆[ε/w]
Eq2

(ε, ε . w); Γ;w : A ∧B ` ∆

The derivation is changed to the following:

Π

(ε, ε . ε); Γ[ε/w]; ε : A; ε : B ` ∆[ε/w]
Eq2

(ε, ε . w); Γ;w : A;w : B ` ∆
∧L

(ε, ε . w); Γ;w : A ∧B ` ∆

(b) Permute Eq1 through >∗L, assuming the label of principal formula is w. The derivation
is as follows.

Π

(ε, ε . ε); Γ[w/w′][ε/w] ` ∆[w/w′][ε/w]
>∗L

(ε, w . w); Γ[w/w′];w : >∗ ` ∆[w/w′]
Eq1

(ε, w′ . w); Γ;w′ : >∗ ` ∆

We modify the derivation as follows.

Π

(ε, ε . ε); Γ[ε/w′][ε/w] ` ∆[ε/w′][ε/w]
Eq2

(ε, ε . w); Γ[ε/w′] ` ∆[ε/w′]
>∗L

(ε, w′ . w); Γ;w′ : >∗ ` ∆

Notice that the premises of the two derivations below Π are exactly the same. The
application of Eq1 in the original derivation is changed to an application of Eq2 in the
modified derivation. However, this does not break the proof, as the induction hypothesis
ensures that either of them can be permuted upwards.

Also, the label of principal formula in the rule >∗L cannot be the one that is replaced
in the rule Eq2 below it, this is the reason we do not exemplify this situation using Eq2.

(c) Permute Eq2 through ∗L, assuming the label of principal formula is z, and it is modified
by the Eq2 application.

Π

(x, y . ε); (ε, ε . ε); Γ[ε/z];x : A; y : B ` ∆[ε/z]
∗L

(ε, ε . ε); Γ[ε/z]; ε : A ∗B ` ∆[ε/z]
Eq2

(ε, ε . z); Γ; z : A ∗B ` ∆

Since x and y are fresh labels, they will not be affected by Eq2. Thus the derivation can
be changed to the following:

53

Π

(x, y . ε); (ε, ε . ε); Γ[ε/z];x : A; y : B ` ∆[ε/z]
Eq2

(x, y . z); (ε, ε . z); Γ;x : A; y : B ` ∆
∗L

(ε, ε . y); Γ; z : A ∗B ` ∆

Since Eq1 and Eq2 only globally replaces labels, their action can be safely delayed through
all the rules other than ∗R and −∗ L. The applications of these two rules after the last
∗R or ∗L will be delayed until the zero-premise rule is necessary.

2. Permute the applications of E, U , A, and AC through non-zero premise logical rules other
than ∗R and −∗ L. Again, we give some examples, the rest are similar.

(a) Permute E through >∗L, assuming the label of the principal formula is y. The original
derivation runs as follows.

Π

(ε, x . z); (x, ε . z); Γ[ε/y] ` ∆[ε/y]
>∗L

(y, x . z); (x, y . z); Γ; y : >∗ ` ∆
E

(x, y . z); Γ; y : >∗ ` ∆

The new derivation is as follows.

Π

(ε, x . z); (x, ε . z); Γ[ε/y] ` ∆[ε/y]
E

(x, ε . z); Γ[ε/y] ` ∆[ε/y]
>∗L

(x, y . z); Γ; y : >∗ ` ∆

This shows that if the logical rule only does substitution, delaying the application of
structural rules makes no difference.

(b) Permute U through ∗L, assuming the label of the principal formula is z. The original
derivation is as follows.

Π

(x, y . z); (z, ε . z); Γ;x : A; y : B ` ∆
∗L

(z, ε . z); Γ; z : A ∗B ` ∆
U

Γ; z : A ∗B ` ∆

The new derivation is as follows.

Π

(z, ε . z); (x, y . z); Γ;x : A; y : B ` ∆
U

(x, y . z); Γ; z : A ∗B ` ∆
∗L

Γ; z : A ∗B ` ∆

Since the labels x and y are all fresh labels, it is safe to change the order to rule appli-
cations as above.

Additive logical rules are totally independent on the relational atoms, so those cases are
similar as the one shown above, except that those rules do not add relational atoms to
the sequent.

54

A.8 Soundness of LS eBBI

Theorem A.8.1. If there is a derivation Π for a sequent Γ ` ∆ in LS eBBI , then there is a derivation
Π′ for the same sequent in LSBBI .

Proof. By induction on the height n of Π.

1. Base case: n = 1. In this case the only rule must be a zero-premise rule. If the rule is ⊥L or
>R, then we can use the same rule in LSBBI , since they are the same. Otherwise, suppose
the rule is id, then Π reads as follows.

G `E (w1 = w2)
id

Γ;w1 : P ` w2 : P ; ∆

Since G `E (w1 = w2) is true, there is a sequence σ of Eq1, Eq2 applications such that S(G, σ)
is defined and w1θ = w2θ, where θ = subst(σ). Therefore we can construct Π′ are follows.

id

Γθ;w1θ : P ` w2θ : P ; ∆θ

...σ
Γ;w1 : P ` w2 : P ; ∆

If the rule is >∗R, Π is:

G `E (w = ε)
>∗R

Γ ` w : >∗; ∆

We construct Π′ similarly, as wθ = ε after the application of σ.

>∗R
Γθ ` wθ : >∗; ∆θ

...σ
Γ ` w : >∗; ∆

2. Inductive cases: suppose every sequent that is derivable in LS eBBI with height less than n is
also derivable in LSBBI , consider a LS eBBI derivation of height n. We do a case analysis on
the bottom rule in the derivation.

(a) If the rule is ∧L, ∧R, → L, → R, ∗L, ∗R, E or U , we can use the same rule in LSBBI ,
since nothing is changed.

(b) If the rule is >∗L, then Π must be the following:

Π1

(ε, w . ε); Γ ` ∆
>∗L

Γ;w : >∗ ` ∆

By the induction hypothesis, (ε, w.ε); Γ ` ∆ is derivable in LSBBI . Applying Lemma 3.1
(substitution for labels in LSBBI) with [ε/w], we obtain (ε, ε . ε); Γ[ε/w] ` ∆[ε/w]. Thus
we construct Π′ as follows.

55

Π′1

(ε, ε . ε); Γ[ε/w] ` ∆[ε/w]
>∗L

(w, ε . w); Γ;w : >∗ ` ∆
U

Γ;w : >∗ ` ∆

(c) If the rule is ∗R, Π runs as follows.

Π1

(x, y . z′); Γ ` x : A; z : A ∗B; ∆

Π2

(x, y . z′); Γ ` y : B; z : A ∗B; ∆
∗R

(x, y . z′); Γ ` z : A ∗B; ∆

The condition on the ∗R rule is G `E (z = z′). Let σ be the sequence of Eq1, Eq2

applications such that S(G, σ) is defined and, zθ = z′θ holds, where θ = subst(σ). Also,
applying the induction hypothesis on Π1 and Π2, we obtain the LSBBI derivations for
each branch respectively. Then with the help of the Substitution lemma, we get two
derivations as follows. Note that we use dashed lines when applying the Substitution
lemmas.

Π′1

(x, y . z′); Γ ` x : A; z : A ∗B; ∆
Lemma 3.1

(xθ, yθ . z′θ); Γθ ` xθ : A; zθ : A ∗B; ∆θ

and

Π′2

(x, y . z′); Γ ` y : B; z : A ∗B; ∆
Lemma 3.1

(xθ, yθ . z′θ); Γθ ` yθ : B; zθ : A ∗B; ∆θ

Then we can apply ∗R and obtain (xθ, yθ . z′θ); Γ ` zθ : A ∗B; ∆θ. Then by applying σ
we obtain the end sequent as follows.

(xθ, yθ . z′θ); Γ ` zθ : A ∗B; ∆θ

...σ

(x, y . z′); Γ ` z : A ∗B; ∆

The case for −∗ L is treated similarly.

(d) If the rule is A, the treatment for the equality entailment is the same. Π is in the
following form:

Π1

(u,w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆ G `E (x = x′)
A

(x, y . z); (u, v . x′); Γ ` ∆

Let S(G, σ) yield xθ = x′θ, where θ = subst(σ), we obtain Π′ as follows.

Π′1

(u,w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆
Lemma 3.1

(uθ,wθ . zθ); (yθ, vθ . wθ); (xθ, yθ . zθ); (uθ, vθ . x′θ); Γθ ` ∆θ
A

(xθ, yθ . zθ); (uθ, vθ . x′θ); Γθ ` ∆θ

...σ

(x, y . z); (u, v . x′); Γ ` ∆

56

The case for AC is similar.

A.9 Completeness of LS eBBI

To prove the completeness of LS eBBI , firstly we add Eq1 and Eq2 in LS eBBI and show that the
resultant system has the same power as LSBBI . Then we prove the admissibility of Eq1 and Eq2

in LS eBBI .

Lemma A.9.1. If a sequent Γ ` ∆ is derivable in LSBBI , then it is derivable in LS eBBI +Eq1+Eq2.

Proof. By induction on the height of the LSBBI derivation. Since with Eq1 and Eq2, most of other
rules become identical, the only non-trivial case is >∗L.

In LSBBI , the derivation runs as follows.

Π

Γ[ε/w] ` ∆[ε/w]
>∗L

Γ;w : >∗ ` ∆

By the induction hypothesis, there is a derivation for Γ[ε/w] ` ∆[ε/w] in LS eBBI + Eq1 + Eq2.
Therefore we construct the derivation as follows.

Π′

Γ[ε/w] ` ∆[ε/w]
Lemma 3.2

(ε, ε . ε); Γ[ε/w] ` ∆[ε/w]
Eq1

(ε, w . ε); Γ ` ∆
>∗L

Γ;w : >∗ ` ∆

Lemma A.9.2. If G[x/y]; (ε, x . x) `E (w1[x/y] = w2[x/y]) then G; (ε, y . x) `E (w1 = w2).

Proof. Let G′ = G; (ε, y . x) and S(G′[x/y], σ) yield (w1[x/y]θ = w2[x/y]θ), we show that G′ `E
(x = y) by following:

G′[x/y]θ `E (w1[x/y]θ = w2[x/y]θ)

...σ

G′[x/y] `E (w1[x/y] = w2[x/y])
Eq1

G; (ε, y . x) `E (x = y)

Now we show that Eq1 is admissible in LS eBBI .

Lemma A.9.3. If (ε, x.x); Γ[x/y] ` ∆[x/y] is derivable in LS eBBI , then (ε, y.x); Γ ` ∆ is derivable
in LS eBBI .

Proof. We show that Eq1 can always permute up through all other rules, and eventually disappear
when it hits the zero-premise rule. Since Lemma 4.1 is sufficient to show the permutations through
nagative rules, here we particularly show the cases for positive rules.

57

1. First let us show the cases for the zero-premise rules. ⊥L and >R are trivial, as they are
applicable for an arbitrary label. The permutation for id runs as follows, where G is the set
of relational atoms in (ε, y . x); Γ.

G[x/y] `E (w1[x/y] = w2[x/y])
id

(ε, x . x); Γ[x/y];w1[x/y] : P ` w2[x/y] : P ; ∆
Eq1

(ε, y . x); Γ;w1 : P ` w2 : P ; ∆

By Lemma A.9.2, if G[x/y] `E (w1[x/y] = w2[x/y]) then G `E (w1 = w2) (note that this
is because (ε, y . x) ∈ G). Therefore we can apply id directly on the bottom sequent, and
eliminate the Eq1 application.

The case for >∗R is treated similarly. As we have shown, structural rules can permute through
>∗L, ∧L, ∧R, → L, → R, ∗L and −∗ R, so these cases are left out here.

2. Permute Eq1 through E, assuming the label being replaced is y. The original derivation is as
follows.

Π

(w, x, .z); (x,w . z); (ε, w . w); Γ[w/y] ` ∆[w/y]
E

(x,w . z); (ε, w . w); Γ[w/y] ` ∆[w/y]
Eq1

(x, y . z); (ε, y . w); Γ ` ∆

The permuted derivation is as follows.

Π

(w, x, .z); (x,w . z); (ε, w . w); Γ[w/y] ` ∆[w/y]
Eq1

(y, x . z); (x, y . z); (ε, y . w); Γ ` ∆
E

(x, y . z); (ε, y . w); Γ ` ∆

3. Premute Eq1 through U , assuming the replaced label is x. Then the derivation runs as follows.

Π

(w, ε . w); (ε, w . w); Γ[w/x] ` ∆[w/x]
U

(ε, w . w); Γ[w/x] ` ∆[w/x]
Eq1

(ε, x . w); Γ ` ∆

We modify the derivation as follows.

Π

(w, ε . w); (ε, w . w); Γ[w/x] ` ∆[w/x]
Eq1

(x, ε . x); (ε, x . w); Γ ` ∆
U

(ε, x . w); Γ ` ∆

Note that we can also generate (w, ε .w) directly using the U rule, but the effect is the same.

58

4. Permute Eq1 through ∗R. Suppose the principal relational atom of Eq1 is not the same as
the one used in ∗R, let G be the set of relational atoms in (ε, w.w′)(x, y .z′); Γ, the derivation
runs as follows. Here we write (Γ ` ∆)[x/y] to mean that replace every y by x in the entire
sequent. The equality entailment is G[w′/w] `E (z[w′/w] = z′[w′/w]) (to save space, we do
not write the constraint in the derivation).

∗R
((ε, w′ . w′)(x, y . z′); Γ ` z : A ∗B; ∆)[w′/w]

Eq1

(ε, w . w′)(x, y . z′); Γ ` z : A ∗B; ∆

The two premises of the ∗R rule application are listed below.

((ε, w′ . w′); (;x, y . z′); Γ ` x : A; z : A ∗B; ∆)[w′/w]
((ε, w′ . w′); (x, y . z′); Γ ` y : B; z : A ∗B; ∆)[w′/w]

By Lemma A.9.2, since G[w′/w] `E (z[w′/w] = z′[w′/w]), and (ε, w . w′) ∈ G, G `E (z = z′)
holds. Therefore we have the following two derivations:

((ε, w′ . w′); (;x, y . z′); Γ ` x : A; z : A ∗B; ∆)[w′/w]
Eq1

(ε, w . w′); (;x, y . z′); Γ ` x : A; z : A ∗B; ∆

and

((ε, w′ . w′); (x, y . z′); Γ ` y : B; z : A ∗B; ∆)[w′/w]
Eq1

(ε, w . w′); (x, y . z′); Γ ` y : B; z : A ∗B; ∆

then we use the ∗R rule, where the equality entailment is G `E (z = z′), to obtain the end
sequent (ε, w . w′)(x, y . z′); Γ ` z : A ∗B; ∆.

If the principal relational atom is used in the ∗R rule, the permutation is analogous. The
permutation through −∗ L is similar.

5. Permutation through A. We show the case where the principal relational atom in Eq1 is not
in A, the other cases are similar. The original derivation is as follows.

((ε, w . w); (u,w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆)[w/w′]
A

((ε, w . w); (x, y . z); (u, v . x′); Γ ` ∆)[w/w′]
Eq1

(ε, w′ . w); (x, y . z); (u, v . x′); Γ ` ∆

The condition on the A rule is G[w/w′] `E (x[w/w′] = x′[w/w′]). By Lemma A.9.2, G `E
(x = x′) holds. Therefore the derivation is transformed into the following:

((ε, w′ . w); (u,w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆)[w/w′]
Eq1

(ε, w′ . w); (u,w . z); (y, v . w); (x, y . z); (u, v . x′); Γ ` ∆
A

(ε, w′ . w); (x, y . z); (u, v . x′); Γ ` ∆

The condition on the A rule is G `E (x = x′). AC is treated similarly.

59

Lemma A.9.4. If (ε, y.y); Γ[y/x] ` ∆[y/x] is derivable in LS eBBI , then (ε, y.x); Γ ` ∆ is derivable
in LS eBBI .

Proof. Symmetric to the proof in Lemma A.9.3.

Theorem A.9.5. If a sequent is derivable in LSBBI , then it is also derivable in LS eBBI .

Proof. Immediate by Lemma A.9.1, A.9.3, A.9.4.

A.10 Substitution lemma for LS eBBI

This section proves the substitution lemma for the intermediate system LS eBBI , as this will be used
in some proofs.

Lemma A.10.1. If G `E (x = y) then for any substitution [s/t], where t 6= ε, G[s/t] `E (x[s/t] =
y[s/t]).

Proof. Let (G, σ, φ) be the solution to G `E (x = y), we prove this lemma by induction on the
length of σ.

1. Base case, σ is an empty sequence. In this case, the sequence of substitutions φ is also empty,
therefore x = y. As a result, it must be the case that x[s/t] = y[s/t], so G[s/t] `E (x[s/t] =
y[s/t]) trivially holds.

2. Inductive case, assume |σ| = n. Let us look at the first rule application in σ. Assume this
rule is Eq1 (the case for Eq2 is symmetric), and the principal relational atom is (ε, u.v), then
σ is as follows.

Gφ `E (xφ = yφ)

...σ′

G′[v/u]; (ε, v . v) `E (x[v/u] = y[v/u])
Eq1

G′; (ε, u . v) `E (x = y)

(a) If u = t and v = s, then the premise of the last rule application is already what we need.

(b) If u = t and v 6= s, we obtain the desired entailment as follows (IH[x/y] stands for
applying the induction hypothesis with the substitution [x/y], we use double line to
mean that the premise and the conclusion are equivalent).

IH[v/s]

G′[v/u][v/s]; (ε, v . v) `E (x[v/u][v/s] = y[v/u][v/s])

G′[s/u][v/s]; (ε, v . v) `E (x[s/u][v/s] = y[s/u][v/s])
Eq1

G′[s/u]; (ε, s . v) `E (x[s/u] = y[s/u])

(c) If u = s, we prove the substituted entailment as follows.

IH[v/t]

G′[v/u][v/t]; (ε, v . v) `E (x[v/u][v/t] = y[v/u][v/t])

G′[u/t][v/u]; (ε, v . v) `E (x[u/t][v/u] = y[u/t][v/u])
Eq1

G′[u/t]; (ε, u . v) `E (x[u/t] = y[u/t])

60

Note that under this case if v = t, the proof is just a special case of the one above.

(d) If v = t, the case is shown below.

IH[s/v]

G′[v/u][s/v]; (ε, s . s) `E (x[v/u][s/v] = y[v/u][s/v])

G′[s/v][s/u]; (ε, s . s) `E (x[s/v][s/u] = y[s/v][s/u])
Eq1

G′[s/v]; (ε, u . s) `E (x[s/v] = y[s/v])

(e) If v = s, the proof is as follows.

IH[v/t]

G′[v/u][v/t]; (ε, v . v) `E (x[v/u][v/t] = y[v/u][v/t])

G′[v/t][v/u]; (ε, v . v) `E (x[v/t][v/u] = y[v/t][v/u])
Eq1

G′[v/t]; (ε, u . v) `E (x[v/t] = y[v/t])

(f) If [s/t] and [u/v] are independent, then we can switch the order of substitution, and
derive the entailment as follows.

IH[s/t]

G′[v/u][s/t]; (ε, v . v) `E (x[v/u][s/t] = y[v/u][s/t])

G′[s/t][v/u]; (ε, v . v) `E (x[s/t][v/u] = y[s/t][v/u])
Eq1

G′[s/t]; (ε, u . v) `E (x[s/t] = y[s/t])

Since substitution does not break the equality entailment, we can show a substitution lemma
for the system LS eBBI .

Lemma A.10.2 (Substitution in LS eBBI). If there is a derivation for the sequent Γ ` ∆ in LS eBBI

then there is a derivation of the same height for the sequent Γ[y/x] ` ∆[y/x] in LS eBBI , where every
occurrence of label x (x 6= ε) is replaced by label y.

Proof. The proof is basically the same as the one for LSBBI , since there are a lot of common rules.
For the rules that are changed, the case for >∗L is similar to those cases for additive rules. The
proof for the rest of changed rules are straightforward with the help of Lemma A.10.1.

A.11 Soundness of LS sf
BBI

Theorem A.11.1. If there is a derivation Π for a sequent G||Γ ` ∆ in LS sf
BBI , then there is a

derivation Π′ for the sequent G; Γ ` ∆ in LS eBBI .

Proof. The soundness proof for this system is rather straightforward. To prove this, we show that
each rule in LS sf

BBI can be simulated in LS eBBI . To do this, one just need to unfold the structural

rule applications into the derivation. For instance, we can simulate the id rule in LS sf
BBI by using

the following rules in LS eBBI :

S(G, σ) `E (w1 = w2)
id

S(G, σ); Γ;w1 : P ` w2 : P ; ∆

...σ
G; Γ;w1 : P ` w2 : P ; ∆

61

The above works because the id rule in LS sf
BBI requires G `R (w1 = w2), which by definition

ensures that S(G, σ) `E (w1 = w2) holds. The case for >∗R works similarly. One thing to
notice is that structural rules only add relational atoms into the current set, so except for G is
becoming a bigger set, all the other structures in the sequent remain the same after the sequence σ
of applications. Let us examine the simulation of ∗R in LS eBBI .

S(G, σ); Γ ` x′ : A;w : A ∗B; ∆ S(G, σ); Γ ` y′ : B;w : A ∗B; ∆
∗R

S(G, σ); Γ ` w : A ∗B; ∆

...σ

G; Γ ` w : A ∗B; ∆

The condition of the ∗R rule is S(G, σ) `E (w = w′). Since the LS sf
BBI rule requires G `R

(x, y .w), which by definition ensures that there is a solution (G, σ) such that (x′, y′ .w′) ∈ S(G, σ),
and the following holds:

S(G, σ) `E (x = x′)
S(G, σ) `E (y = y′)
S(G, σ) `E (w = w′)

The last relation entailment is enough to guarantee that the ∗R rule is applicable. To restore
each branch, we need the Lemma A.10.2 (Substitution lemma for LS eBBI). Here we use double line
to indicate the premise and the conclusion are equivalent. Let us look at the left branch. By the
first relation entailment, there is a sequence σ′ of Eq1, Eq2 applications so that xθ = x′θ. Therefore
we can construct a proof for the left branch as follows.

S(G, σ); Γ ` x : A;w : A ∗B; ∆
Lemma A.10.2

S(G, σ)θ; Γθ ` xθ : A;wθ : A ∗B; ∆θ

S(G, σ)θ; Γθ ` x′θ : A;wθ : A ∗B; ∆θ

...σ′

S(G, σ); Γ ` x′ : A;w : A ∗B; ∆

The case for −∗ L is analogous. The rest rules are the same as in LS eBBI , thus we conclude that

the rules in LS sf
BBI are sound.

A.12 Completeness of LS sf
BBI

The completeness proof runs the same as in LS eBBI : if we add the structural rules E, U , A, AC
in LS sf

BBI , then it becomes a superset of LS eBBI . Then we prove that these rules are admissible in

LS sf
BBI by showing they can permute through ∗R, −∗ L, id, and >∗R.

First of all, let us show that when we add E, U , A, AC (from LS eBBI) to LS sf
BBI , its rules can

simulate those ones in LS eBBI . As most of the rules are identical, the key part is the show the
relation entailment is as powerful as the equality entailment. This is “built-in” the definition, so
there is no surprise.

Lemma A.12.1. If G `E (w1 = w2), then G `R (w1 = w2).

Proof. Let σ be an empty list of rule applications, then S(G, ∅) = G. Therefore by definition
G `R (w1 = w2).

62

If we change `R to `E in LS sf
BBI , every rule is the same as the one in LS eBBI . Therefore

LS sf
BBI + E + U +A+AC is at least as powerful as LS eBBI .

Lemma A.12.2. The rules E, U , A, and AC are admissible in LS sf
BBI .

Proof. We show that the said rules can permute upwards through id, >∗R, ∗R and −∗ L, the other
cases are cover by Lemma 4.1. We only give some examples here, the others are similar. The heart
of the argument is that the application of structural rules are hidden inside the relation entailment,
so we do not have to apply them explicitly.

Permute E through id, the suppose the original derivation runs as follows.

G; (y, x . z); (x, y . z) `R (w1 = w2)
id

G; (y, x . z); (x, y . z)||Γ;w1 : P ` w2 : P ; ∆
E

G; (x, y . z)||Γ;w1 : P ` w2 : P ; ∆

The permuted derivation is:

G; (x, y . z) `R (w1 = w2)
id

G; (x, y . z)||Γ;w1 : P ` w2 : P ; ∆

Assume G; (y, x . z); (x, y . z) `R (w1 = w2) is derived by applying a sequence σ of structural
rules. Then S((G; (x, y . z)), σ′) can prove G; (x, y . z) `R (w1 = w2), where σ′ is E({(x, y . z)}, ∅)
followed by σ. That is, the application of E is absorbed in `R.

Permute A through id, the argument is similar. The original derivation is:

G; (u,w . z); (y, v . w); (x, y . z); (u, v . x′) `R (w1 = w2)
id

G; (u,w . z); (y, v . w); (x, y . z); (u, v . x′)||Γ;w1 : P ` w2 : P ; ∆
A

G; (x, y . z); (u, v . x′)||Γ;w1 : P ` w2 : P ; ∆

The condition on the rule A is G; (x, y . z); (u, v . x′) `E (x = x′). Then we can omit the
application of A, since G; (u,w . z); (y, v . w); (x, y . z); (u, v . x′) `R (w1 = w2) implies G; (x, y .
z); (u, v . x′) `R (w1 = w2), one just need to add the A application ahead to the sequence of
structural rules that derives the former relation entailment to get a new sequence of rules to derive
the latter one.

A.13 The Proof of the Heuristic Method

In the following proofs we use the tree representation of a set of relational atoms. Given a labelled
binary tree tr as defined in Section 6, we say another labelled binary tree tr′ is a permutation of
tr if they have the same root and same multiset of leaves. A permutation on tr is generally done
by applying the rules E,A on Rel(tr). Figure 11 gives some examples on tree permutations. In
Figure 11, (b) is permuted from (a) by using E on (d, e . b), whereas (c) is permuted from (a) by
using A on the two relational atoms in the original tree.

Lemma A.13.1. Let tr be a labelled binary tree with a root labelled with r and a multiset of
labels L for the leaves. If there is a labelled binary tree tr′ with the same root and leaves labels
respectively, then there is a variant tr′′ of tr′ and a sequence σ of E,A rule applications such that
Rel(tr′′) ⊆ S(Rel(tr), σ).

63

a

b c

d e

a

b c

e d

a

d f

c e
(a) (b) (c)

Figure 11: Examples of tree permutations.

Proof. Prove by induction on the width of the tree tr. We show that any distinct permutation(i.e.,
they are not variants of each other) of a tree can be achieved by using the rules E and A. Base case
is when there are only two leaves in tr. In this case, there is only one relational atom in Rel(tr),
thus clearly there is only one distinct permutation of tr, which can be obtained by applying E on
Rel(tr).

The next case is when there are 3 leaves in the tree, meaning Rel(tr) contains two relational
atoms. In this case, it can be easily checked that there are 12 distinct permutations of tr, all of
which can be derived by using E and A.

Inductive case, suppose the lemma holds for all trees with width less than n, consider a tree tr
with width n. Suppose further that the root label of tr is r, it’s two children are in the relational
atom (w1, w2 . r), and the multisets of leaves labels for the subtrees of w1 and w2 are L1, L2

respectively. Let tr′ be a permutation of tr with the same root label and leaves labels, and in tr′ the
two children of the root label are in the relational atom (w3, w4 . r). Suppose the multisets of leave
labels for the subtrees of w3, w4 are L3, L4 respectively. Apparently, since L1 ∪ L2 = L3 ∪ L4 = L,
every label in L3 is either in L1 or in L2. Let L′ = L1 ∩ L3 and L′′ = L2 ∩ L3, then L′ ∪ L′′ = L3

and (L1 \ L′) ∪ (L2 \ L′′) = L4. By the induction hypothesis on the subtrees of w1 and w2, there
exist w5, w6, w7, w8 s.t. (w5, w6 .w1), (w7, w8 .w2) hold, and the subtrees of w5, w6, w7, w8 give the
multisets of leaves L′, (L1 \ L′), L′′, (L2 \ L′′) respectively. Then we use the following derivation to
permute the tree:

(w′′, w′′′ . r); (w6, w8 . w
′′′); (w5, w7 . w

′′); · · ·
A

(w′, w6 . r); (w′′, w8 . w
′); (w5, w7 . w

′′); · · ·
E × 2

(w6, w
′ . r); (w8, w

′′ . w′); (w5, w7 . w
′′); · · ·

A

(w6, w
′ . r); (w2, w5 . w

′); (w8, w7 . w2); · · ·
E

(w6, w
′ . r); (w2, w5 . w

′); (w7, w8 . w2); · · ·
A

(w6, w5 . w1); (w7, w8 . w2); (w1, w2 . r); · · ·
E

(w5, w6 . w1); (w7, w8 . w2); (w1, w2 . r); · · ·
Now the subtrees of w′′ and w′′′ has the same multisets of leaves as w3 and w4 respectively. Again
by the induction hypothesis on the subtrees of w′′ and w′′′, we obtain a tree tr′′ which is a variant
of tr′.

Proof of Lemma 6.1.

64

Proof. The lemma restricts the labels of internal nodes to be free variables that are created after
all the labels on the left hand side. Additionally, each free variable is only allowed to occur once
in a tree. Therefore given a set G of relational atoms as the left hand side of those constraints,
and any sequence σ of structural rule applications, the free variable labels for internal nodes can
be assigned to any labels occur in S(G, σ). By Lemma A.13.1, there exists a sequence σ of E,A
applications which converts the tree on the left hand side to a tree which is a variant of the one
on the right hand side, thus those constraints can be solved by assigning the free variables in the
internal nodes to the corresponding labels.

A.14 Proof of Formulae in the Conclusion

In this section we show the proofs of the four formulae in the conclusion. We extend LSBBI in the
obvious way to handle the additive connectives ¬ and ∨, where ¬p = p→ ⊥ and p∨q = ¬(¬p∧¬q).
Thus we obtain the left and right rules for ¬,∨ as in the classical setting. To save space, we shall
write rn to mean the rule r is applied n times, and write r1; r2 to mean apply r1 then apply r2 on
a sequent, when the order of rule applications does not matter.

1. To prove the formula (F ∗ F)→ F , where F = ¬(>−∗ ¬>∗), we use the following derivation
in LSBBI :

(w′, w′′ . ε); (b′, c′ . w′′); (b, c . w′); (b, c . a); · · ·
A

(w′, c′ . w); (w, b′ . ε); · · ·
E2

(c′, w′ . w); (b, c . w′); (b′, w . ε); · · ·
A

(b′, w . ε); (ε, b . w); (c′, c . ε); · · ·
A

(b, c . a); (b′, b . ε); (c′, c . ε); (ε, ε . ε); · · ·
U

(b, c . a); (b′, b . ε); (c′, c . ε); a : >−∗ ¬>∗; b′ : >, c′ : > `
>∗L2

(b, c . a); (b′, b . b′′); (c′, c . c′′); a : >−∗ ¬>∗; b′ : >, c′ : >; b” : >∗; c′′ : >∗ `
¬R2

(b, c . a); (b′, b . b′′); (c′, c . c′′); a : >−∗ ¬>∗; b′ : >, c′ : > ` ’
¯
′ : ¬>∗; c′′ : ¬>∗

−∗ R2

(b, c . a); a : >−∗ ¬>∗ ` b : >−∗ ¬>∗; c : >−∗ ¬>∗
¬L2;¬R

(b, c . a); b : ¬(>−∗ ¬>∗); c : ¬(>−∗ ¬>∗) ` a : ¬(>−∗ ¬>∗)
∗L

a : F ∗ F ` a : F → R` a : (F ∗ F)→ F

The correct relational atom that is required to split a : >−∗ ¬>∗ is (w′′, a . ε). However, in
the labelled sequent calculus we can only obtain w′′, w′ . ε. Although w′ and a both have
exactly the same children, but the non-deterministic monoid allows the composition b ◦ c to
be multiple elements, or even ∅ in M. Thus we cannot conclude that w′ = a. This can be
solved by using P to replace w′ by a, then use E to obtain (w′′, a . ε) on the left hand side of
the sequent, then the derivation can go through:

>∗R
(w′′, a . ε); · · · ;` ε : >∗

¬L
(w′′, a . ε); · · · ; ε : ¬>∗ `

>R
(w′′, a . ε); · · · ` w′′ : >

−∗ L
(w′′, a . ε); · · · ; a : >−∗ ¬>∗; b′ : >, c′ : > `

2. The trick to prove (¬>∗−∗ ⊥)→ >∗ is to create a relational atom (w,w.w′), as shown below.

65

>∗R
(ε, ε . w′); · · · ` ε : >∗

>∗L
(w,w . w′); · · · ;w : >∗ ` w : >∗

¬R
(w,w . w′); · · · ` w : ¬>∗;w : >∗

⊥L
(w,w . w′); · · · ;w′ : ⊥ ` w : >∗

−∗ L
(w,w . w′);w : ¬>∗−∗ ⊥ ` w : >∗

T
w : ¬>∗−∗ ⊥ ` w : >∗ → R` w : (¬>∗−∗ ⊥)→ >∗

3. The proof for (>∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥) ∨ (q−∗ ⊥)) is as follows.

id· · · ; c : q ` c : q; · · · id· · · ; a : p ` a : p; · · ·
∗R

(a, c . e); · · · ; a : p; c : q ` e : p ∗ q; · · · ⊥L· · · e : ⊥ ` · · ·
−∗ L

(e, ε . e); (a, c . e); (a, ε . b); (c, ε . d); ε : (p ∗ q)−∗ ⊥; a : p; c : q ` b : ⊥; d : ⊥
U

(a, c . e); (a, ε . b); (c, ε . d); ε : (p ∗ q)−∗ ⊥; a : p; c : q ` b : ⊥; d : ⊥
T

(a, ε . b); (c, ε . d); ε : (p ∗ q)−∗ ⊥; a : p; c : q ` b : ⊥; d : ⊥
−∗ R2

ε : (p ∗ q)−∗ ⊥ ` ε : p−∗ ⊥; ε : q−∗ ⊥
>∗L

w : >∗;w : (p ∗ q)−∗ ⊥ ` w : p−∗ ⊥;w : q−∗ ⊥
∧L;∨R

w : >∗ ∧ ((p ∗ q)−∗ ⊥) ` w : (p−∗ ⊥) ∨ (q−∗ ⊥)
→ R` w : (>∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥) ∨ (q−∗ ⊥))

4. The proof for ¬(>∗ ∧A ∧ (B ∗ ¬(C−∗ (>∗ → A)))) in LSBBI is as follows.

id
(c, b . ε); (a, b . ε); ε : A; a : B; c : C ` ε : A

>∗L
(c, b . d); (a, b . ε); ε : A; a : B; c : C; d : >∗ ` d : A

→ R
(c, b . d); (a, b . ε); ε : A; a : B; c : C ` d : >∗ → A

−∗ R
(a, b . ε); ε : A; a : B ` b : C−∗ (>∗ → A)

¬L
(a, b . ε); ε : A; a : B; b : ¬(C−∗ (>∗ → A)) `

∗L
ε : A; ε : B ∗ ¬(C−∗ (>∗ → A)) `

>∗L
w : >∗;w : A;w : B ∗ ¬(C−∗ (>∗ → A)) `

∧L
w : >∗ ∧A ∧ (B ∗ ¬(C−∗ (>∗ → A))) `

¬R` w : ¬(>∗ ∧A ∧ (B ∗ ¬(C−∗ (>∗ → A))))

66

